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Abstract

Machine vision techniques for automatic neuron reconstruction from electron mi-
croscopy (EM) volumes have made tremendous advances in recent years. Nonetheless,
large-scale reconstruction from teravoxels of EM volumes retains both under- and over-
segmentation errors. In this paper, we present an efficient correction algorithm for EM
neuron reconstruction. Each region in a 3D segmentation is represented by its skeleton.
We employ deep convolutional networks to detect and correct false merge and split er-
rors at the joints and endpoints of the skeletal representation. Our algorithm can achieve
the same or close accuracy of the state-of-the-art error correction algorithm by querying
only at a tiny fraction of the volume. A reduction of the search space by several orders
of magnitude enables our approach to be scalable for terabyte or petabyte scale neuron
reconstruction.

1 Introduction

Exhaustive knowledge of neuron wiring diagram offers valuable information to neuroscience
[10, 29, 30]. Capitalizing on machine vision/learning techniques, EM connectomics seeks
to uncover the biological neural network of animal brain from electron microscopy (EM)
images. Consequently, the computational challenges in EM connectomics received steady
attention of the computer vision community over the past ten years [1, 2, 4, 5, 6, 12, 17, 19,
22, 23, 26, 31, 32]. One critical computer vision task in EM connectomics is segmentation
of 3D neuron shapes from large EM volumes.

Recent breakthroughs in the vision algorithms for 3D volumetric segmentations [13, 18]
resulted in unprecedented accuracy in neural reconstruction. However, at a large scale, mul-
tiple iterations of an extremely costly flood filling algorithm [13] over terabyte size volume
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Figure 1: A 2D section
of EM data, where two
segments (rendered in
magenta and green in
Figure 2(a)) were dis-
connected due to an ar-
tifact.

still leaves behind many errors in the output segmentation [14].
Lee et al. [18] have also reported errors residues that people can
readily identify, and, makes an important observation that it is more
difficult for a human expert to find errors based on the inspection
of EM images alone without the access to a 3D rendering. This
insight alludes to a cause for the failure of existing segmentation
methods that is more fundamental than algorithmic limitations.

The structure and organization of neurons in animal brain are
extremely irregular and intricate. The shape of a neuron cell ex-
hibits random and wide variation along its structure that often
shrinks into an extremely narrow tubular shape. Such narrow parts
of a cell are located in congested areas surrounded by other cells.
When imaged by the EM apparatus, these areas cause significant
ambiguity – even for human experts – to interpret.

In addition, the generation of EM images of the animal brain
tissue is a complex procedure comprising multiple consecutive
stages of sample preparation techniques, section cutting mechanisms, and finally imaging
the sections with an electron microscope. Despite many recent advances made in each of
these stages, they are far from being perfect, and many of these tasks are still performed
manually [8, 15]. As a result, the EM images of brain tissue contain a significant amount of
artifacts of various kinds, often leading to severe distortion of the image.

The artifacts on EM images, in combination with the inherent ambiguity of neural struc-
ture and organization, lead to serious challenges to the voxelwise prediction, as well as sub-
sequent agglomeration methods, relying only on EM image characteristics (intensity values
and learned features of them). In Figure 1, we show one 2D section of a plane of EM volume
corrupted by an artifact (a white horizontal strip in the middle); the segment (magenta) of a
narrow neuron cell that was disconnected is circled in red (dashed line).

Similar to human cognition, we believe it is difficult for an algorithm to infer the intricate
structure of neurons exclusively from EM images that are potentially corrupted by the EM
sample preparation and imaging. Some 3D representation of the segmented regions is es-
sential to identify true neural morphology at challenging locations (as is the case for human
experts). As an example, a 3D rendering in Figure 2(a) effectively resolves the ambiguity in
joining the two incorrectly split segments on the 2D section of Figure 1 – the magenta region
in Figure 2(a) corresponds to the segment circled in red in Figure 1. Similarly, a 3D view of
an incorrectly merged segment in Figure 2(b) provides strong evidence that the vertical and
horizontal branches of this segment should be separated.

We propose an efficient error correction of EM segmentation output that exploits the
structural information of the 3D shapes. Each segment in an input segmentation is repre-
sented by a connected set of lines, henceforth called the skeleton, that emulates the segment
centerline to capture as much morphological information as possible. Ideally, each split error
should be identifiable at the terminal points of a skeleton. An erroneous merge of two cells
should also be manifested in the skeleton as a new branch.

Our method exploits the skeleton joints (endpoints of skeleton lines) to detect and correct
segmentation errors. We employ a two-stage deep CNN based error correction scheme first
to fix the under-segmentation error and then repair the false splits in the merge corrected
volume. Utilizing the skeleton joints reduces the number of search locations by five orders
of magnitude and thus enables our method to be scalable to petabyte scale reconstruction.
Experimentally, we have shown that the skeletal representation does not lose any volumetric
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Figure 2: 3D renderings can often resolve the ambiguity in neural reconstruction: (a) 3D
view of two incorrectly split segments (magenta and green) due to an imaging artifact shown
in Figure 1; (b) 3D view of two incorrectly merged segments. To correct such errors, we
utilize skeleton joint of a segment: (c, d) at each skeleton joint, we apply a 3D CNN to predict
the existence of a false merge and a cut plane given the 3D subvolumes of segmentation mask
and grayscale images (Section 2.1); (e) later, a second 3D CNN is applied only at the terminal
points of the skeleton to predict the connectivity of two segments A (cyan) and B (yellow)
(Section 2.2).

information for the purpose of error correction. Our error correction method achieves an
accuracy comparable to those of Zung et al. [34] by querying a tiny fraction of the volume.

2 Related Work
Although not presented in this line of thought, Zung et al. [34] have demonstrated the poten-
tial of a deep CNN based error correction approach for EM segmentation with high accuracy.
However, their error detection network does not utilize the shape information already avail-
able in the 3D segments and needs to be applied on each voxel – a task that is immensely
expensive. On a large reconstruction effort of a petabyte size volume, applying their algo-
rithm will take 20 months on a 40 GPU cluster. Rolnick et al. [25] have proposed a strategy
to detect only the false merge location using a deep net applied to a selected number of lo-
cations on a downsampled segmented volume. However, their work does not: (1) provide a
concrete mechanism to downsample and sparse selection; (2) devise a method to correct the
over- or under-segmentation errors; (3) quantify how the accuracy of correction deteriorates
when a deep net is applied on sparse locations.

3 Method
Given an input segmentation result, our algorithm attempts to correct the two types of errors
in it: false merge (under-segmentation) and false split (over-segmentation). Our algorithm
consists of two successive stages: first, during the false merge correction stage (Section 2.1)
we use a 3D CNN, which detects and corrects false merges in the initial segmentation; then,
another 3D CNN is deployed to correct the false splits (Section 2.2) in the volume generated
by the first stage or those false splits present in the segmentation originally. Both these stages
rely on a skeletal representation of each segment within the input segmentation. We assume
the availability of an effective skeletonization algorithm. For all experiments in this paper,
we utilized the approach of Zhao and Plaza [33], which is an adaptation of the TEASAR
algorithm [27] to generate the skeletons. For each segment R ∈R in the input segmentation
R, we generate a 3D skeleton S, which is represented by the coordinates of its line endpoints
or joints p j.
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(a) (b) (c) (d)

Figure 3: Detailed overview of false merge correction. (a) the CNN analyzes the subvolumes
around the joints (blue) of a skeleton of a selected segment (gray) of input segmentation; (b)
prediction from CNN (red); (c) cut plane approximation (claret); (d) separated segments
(green and yellow).

In Figures 2(c)-(e), we overlay for demonstration a skeleton composed of a set of lines,
and their line endpoints or joints, on an automatically segmented region. For the identifica-
tion and rectification of the under-segmentation errors, we employ a CNN at each skeleton
joint to detect whether or not a false merge is present and to predict the set of voxels that are
later used to construct a cut plane to separate the two or more incorrectly merged segments.
This process is illustrated in Figures 2(c),(d) and described in details Section 3.1. Afterward,
our method also checks each extreme or terminal points of all the skeletons (these are the
line endpoints at the extremities of the skeletons) with another CNN to determine whether or
not the segment should be connected to any of its adjacent segments, as shown in Figure 2(e)
(Section 3.2).

The presented approach is fundamentally different from that proposed in Zung et al. [34].
They use one deep net for detection and another for correction of both false split and false
merge errors. In contrast, we employ a deep CNN for detecting and correcting false merges
and another CNN for fixing false split errors. Dividing the over- and under-segmentation into
two separate network simplifies the tasks considerably. As a result, our network architecture
can achieve almost the same accuracy as in Zung et al. [34] with a simpler design. Due to
our use of skeletal representation, an exhaustive search on the whole volume is not required
in our method; especially for false splits, our network needs to be applied only at skeleton
endpoints which are extremely sparse with respect to the full volume.

3.1 False Merge Correction
Our method for false merge correction consists of three main steps that are illustrated in Fig-
ure 3: (1) for each joint p j, a 3D CNN generates a voxelwise probability map of a potential
cut plane within a 3D subvolume PEM centered at p j (Figure 3(a)); (2) the probability maps
of the overlapping volumes are combined using the maximum operation and binarized using
a threshold of 0.5. The binary voxels of the predicted cut planes are clustered together based
on the predefined distance threshold (Figure 3(b)); (3) The final split is generated using the
predicted cut plane clusters and its 3D planar approximations (Figure 3(c),(d)).

3.1.1 False Merge Corrector CNN

Our CNN for dealing with under-segmentation has two goals: (1) detect whether or not there
is a false merge at any particular location, and, (2) to predict the set of voxels that constitutes
the cut plane for a correction. Both of these tasks are carried out by two designated branches
of our CNN, as illustrated in Figure 4. One of the branches possesses fully connected layers
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Figure 4: Architecture of our cut plane predicting CNN. Given the raw EM image and a
binary mask of a label as input, the fully convolutional branch (a) of the CNN predicts a
binary mask of the cut plane to split the incorrectly merged segments, and (b) the fully-
connected branch detects whether a false merge is present.

with a final sigmoid activation function for the false merge detection. The other branch is
fully convolutional that predicts the set of voxels for the cut plane. The input to our network
is a 3D patch with two channels: the raw EM image and a corresponding binary mask of a
segmented region, and the outputs are a binary label and a binary mask of the cut plane if an
error is present or blank if there is none.
CNN Architecture: The fully-convolutional branch consists of one convolutional layer, fol-
lowed by five consecutive densely connected convolutional blocks [11], each includes three
convolutional layers followed by one pooling layer. The output activations of each dense
convolutional block are upsampled with transposed convolutions to match the input size,
concatenated, and followed by a dense block and a softmax classifier. All convolutional lay-
ers, except the last layer, are followed by the rectified linear unit (ReLU) activation function.
To overcome the anisotropic nature (z or depth dimension has a lower resolution than those
of x, y plane) of the EM images, the first convolutional layer, the first two densely connected
convolutional blocks, pooling layers and the corresponding upsampling layers utilize 2D
operations, while the following layers operate in 3D.

The upsampling layers allow us to propagate the high-level activations to the higher lay-
ers. However, the impetuous upsampling can quickly become computationally complex due
to the cumulative increase of the number of high-resolution activation maps. The symmet-
rical densely connected upsampling layers [3] can mitigate this inadequacy. However, such
an approach adds extra complexity of the convolution operations over a large number of in-
termediate activations maps in the dense blocks in the upsampling path and might show a
tendency to overfit [20]. We propose to use layers of transposed convolutions with strides to
upsample the output of each dense block. To avoid the buildup of high-resolution activation
maps, we limit the number of upsampled activations proportional to their depth in the model.

The fully-connected branch is trained to perform a binary classification of the input 3D
patch. More formally, a block of three consecutive fully-connected layers utilizes the fea-
tures extracted by the last densely connected convolutional block to infer if the input patch
contains an example of the incorrectly merged labels. The first two fully-connected lay-
ers are followed by the ReLU activation function, while the last layer ends with a sigmoid
function.

Citation
Citation
{Huang, Liu, Weinberger, and vanprotect unhbox voidb@x penalty @M  {}der Maaten} 2016

Citation
Citation
{Briggman, Denk, Seung, Helmstaedter, and Turaga} 2009{}

Citation
Citation
{Ngiam, Chen, Chia, Koh, Le, and Ng} 2010



6 DMITRIEV, PARAG, et al.: EFFICIENT CORRECTION FOR EM CONNECTOMICS

Model Training and Optimization: The examples for the training dataset were generated
by extracting 3D subvolumes centered at random locations within the training volume. To
avoid oversampling locations from large segments, we first randomly choose a segment R
from R and then uniformly sample a random point location within R. We collect a bal-
anced set of examples for false and correct merges in the segmentation. However, the initial
segmentations typically possess too few false merge errors to construct a reasonably large
training set for our purpose. This is because most of the existing segmentation algorithms
are biased to minimize under-segmentation [7, 23]. Therefore, we additionally augment the
training data by artificially merging correctly segmented labels fromR.

Our network was trained to minimize a joint loss of a binary voxelwise cross-entropy
loss computed against the target mask of the cut plane and a binary cross-entropy loss for the
fully-connected branch. However, due to the small size of the target mask, which generally
occupied less than 1% of the 3D patch, the naive and straightforward training approach leads
to the network getting trapped in the local minima without predicting any cut planes. To
avoid this, we initially train the network on the highly dilated binary masks of the cut planes
and then fine-tune the weights while gradually decreasing the dilation rate. Consequently,
such a stepwise process can also be viewed as training a merge error detector on the poorly
localized dilated cut planes, which is being fine-tuned to a corrector with the decrease of the
dilation rate.

3.1.2 Planar Approximation

The voxelwise predictions from the fully convolutional CNN do not form in practice an ex-
act cut plane. We approximate the cut plane by fitting a surface to the cluster of discretized
CNN detections. The voxelwise probability map, generated by our CNN, is binarized using
a threshold of 0.5. Each voxel of the resulting volume belongs to one or more potential cut
planes. We first cluster the voxels together based on a distance threshold, which is empir-
ically determined and then additionally filter the clusters based on the size to remove the
erroneous isolated points.

Finally, we perform a surface fitting to the voxels of each cluster. Empirically, we found
that a simple 3D plane fitting produced the best results. In particular, given a set of the
coordinates {(xi,yi,zi)}k

i=1 of the voxels of a particular cluster, we fit a plane l1x+ l2y+ l3z+
l4 = 0. The combination of the cut plane cluster and the corresponding planar approximation
represents the final cut plane between the incorrectly merged labels.

3.2 False Split Correction
After rectifying the false merges in the segmentation volume, we apply another 3D CNN at
the skeleton terminal points to determine which neighboring segments belong to the same
neuron cell and therefore should be connected. Our approach finds all the extreme or terminal
points of the skeletal representations by searching joints that have only one neighbor. For a
terminal point τR of a segment R, our method explores a small volume VτR centered at τR to
locate the set of neighbors Nbr(R|τR) = {N|N ∈ R∧ overlap(N,VτR) 6= /0} of R that has an
overlap with VτR . For every possible candidate for continuation, {(R,N)|N ∈ Nbr(R|τR)}, a
false split rectifier CNN predicts whether or not R and N belong to the same cell and therefore
should be joined, as illustrated by Figure 2(e).

Given the grayscale images and the binary masks of N and R within the small volume
VτR , the over-segmentation corrector 3D CNN predicts a confidence value on whether N and
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(a) VI curve MVCTEM Vol 1 (b) VI curve MVCTEM Vol 2 (c) VI curve MNCSEM

Figure 5: (a, b) VI curves for the experiments on MVCTEM, and (c) on MNCSEM data.
The x and y axes correspond to under- and over-segmentation VIs, respectively. Lower VI
implies better segmentation. The VI errors are computed in bits (log2).

R should be connected. For this purpose, we have employed a convolutional net with five
convolution layers, each with dimension 3× 3× 3, parametric ReLU activation and max-
pooling, and two fully connected layers (with dropout) at the end. The false merge corrected
volume contains more false-splits than the input volume segmentation and distribution of true
and false split cases is highly imbalanced. We use class weights to normalize the imbalance
within each batch of samples.

4 Experimental Results
Our method was trained and evaluated on two datasets of EM volumes. The training proce-
dures, as well as the parameters for the CNNs used to fix the under- and over-segmentation
errors remained the same on both datasets. The inputs to the false merge and false split cor-
rector were grayscale image volumes and binary segmentation masks of sizes 36×192×192
and 20×192×192, respectively, as described in Sections 3.1 and 3.2. Our framework was
implemented in Python, using Keras library with TensorFlow backend. We use Adam opti-
mizer initialized with the learning rate of 0.0001,β1 = 0.9,β2 = 0.999 [16]. We augmented
the training data by rotation, flip and small translation for training both networks. All seg-
ments smaller than 2000 voxels along with all the branches less than 20 voxels long were
removed from the skeleton computation [33] to avoid spurious branches and tiny fragments,
which are less likely to be useful for error correction. The quantitative evaluation was re-
ported using the variation of information (VI) score, which is a standard evaluation metric in
connectomics literature [7, 18, 21, 23].

Given the trained networks and computed skeletons, we apply the CNN correctors on
the test volumes sequentially, first to fix the under-segmentation error and then to correct
the over-segmentation error. As the improving under-segmentation is prioritized over false
splits, we allow the false merge correction to increase the over-segmentation VI slightly in
the first stage.

4.1 Correction on Mouse Visual Cortex TEM Data (MVCTEM)

For the first experiment, six non-overlapping EM volumes 2048×2048×256 voxels, (reso-
lution 3.6×3.6×40 nm3, referred to as MVCTEM) imaged from mouse visual cortex using
TEM apparatus were collected from the authors of [34]. The ground truth volumes were
generated by correcting an initial segmentation from the method of Lee et al. [18]. Out of

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Zhao and Plaza} 2014

Citation
Citation
{Funke, Tschopp, Grisaitis, Singh, Saalfeld, and Turaga} 2017

Citation
Citation
{Lee, Zung, Li, Jain, and Seung} 2017

Citation
Citation
{Nunez-Iglesias, Kennedy, Parag, Shi, and Chklovskii} 2013

Citation
Citation
{Parag, Ciresan, and Giusti} 2015

Citation
Citation
{Zung, Tartavull, Lee, and Seung} 2017

Citation
Citation
{Lee, Zung, Li, Jain, and Seung} 2017



8 DMITRIEV, PARAG, et al.: EFFICIENT CORRECTION FOR EM CONNECTOMICS

(a) (b) (c) (d) (e) (f)

Figure 6: Examples of the corrected erroneously merged segments: (a), (d) input region; (b),
(e) segments split by our false merge corrector; (c), (f) ground truth labels.

these six volumes, four volumes were used for training and the remaining two, which were
used as validation and test sets by Zung et al. [34], were utilized as test volumes.

The over- and under-segmentation VI errors of the input, intermediate and final outputs
of our method, along with those from [34], are plotted in y and x axes of Figure 5, respec-
tively, following the convention in EM connectomics community [7, 23]. Ideally, we wish
to achieve a 0 VI for both false merge and split, that is, lower VI is better. Following most
studies in EM connectomics, the VI errors are computed using log2, that is, in bits, as op-
posed to nats in Zung et al. [34]. As a result, the values reported here will be different from
those in Zung et al. [34].

The VI error of the input segmentation is marked as ××× in Figure 5. First, we checked
what percentage of false split errors is amenable to correction in the ideal scenario. For this
purpose, we used an oracle, which utilizes the ground truth segmentation as the reference, to
repair all the over-segmentation errors in the input volume. The resulting VI is plotted as ∗∗∗
(Seg oracle). The VI of Seg oracle sets a lower bound of errors that can be attained by fixing
the false splits in the input segmentation.

After correcting merge errors with our method the under-segmentation VI is reduced sub-
stantially (marked as O, dubbed Merge corrected) – from 0.088 to 0.033 in Vol 1 (Figure 5(a))
and from 0.054 to 0.025 in Vol 2 (Figure 5(b)) – with a slight increase in over-segmentation
VI. Although the difference in under-segmentation VI appears to be small, they correspond
to significant improvement because the error is computed over a large volume of data (1.07
Gigavoxels). In order to further exhibit the results of our technique, we show the 3D views
of two false merge corrections in Figure 6. These results demonstrate that our false merge
detection and correction technique based on skeleton joints is very effective to detect and
correct false merges.

On the merge corrected volume, we applied another oracle that operates only on skeleton
terminal points to check whether or not two segments in the volume should be connected.
The VI of this oracle corrected result, shown as 3 (Skeleton oracle) in Figure 5 sets the lower
bound of error attainable from the merge corrected volume. A comparison between the over-
segmentation VI errors of the two oracles (Seg oracle as ∗∗∗ and Skeleton oracle as 3) suggests
that our skeleton based approach should ideally be able to identify almost all the false split
mistake locations that one can locate using a segmentation ground truth. In other words, the
skeleton extreme points are sufficient to determine the potential over-segmentation errors
with a perfect classifier.

The false split correction CNN was trained on segmentations of training volumes, cor-
rected by our under-segmentation correction CNN. The o in Figure 5 shows the VI values
of false split correction on the merge corrected test volumes using the CNN and joining
technique, described in Section 3.2. Each point corresponds to a threshold on the false split
corrector CNN confidence. The VI curves for our merge and split correction are either the
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Table 1: Search space reduction by skeletal representation
Size MVCTEM Vol 1 MVCTEM Vol 2 MNCSEM

Volume size (voxels) 1.07×109 1.07×109 0.816×109

Query points (skeleton joints) 40621 41513 62815
Reduction in search (vol ratio) 3.866×10−5 3.78×10−5 7.69×10−5

same or very close to those produced by the state-of-the-art method [34] (plotted in +) 1. The
fact that a simple vanilla CNN for fixing over-segmentation can achieve such a high success
rate suggests that employing a more involved CNN such as [9, 28] can further reduce, if not
eliminate, all the split errors at a low under-segmentation VI value.

For reference, we also plot the error of an initial segmentation generated by Lee et al. [18]
with a mean agglomeration parameter that generates low over-segmentation in o (Seg min
overseg) for one of the volumes (Vol 1, the same result from Vol 2 was unavailable to us).
The significantly lower over- and under-segmentation VI values of our algorithm than those
of Seg min overseg suggests that our method can fix errors that cannot be addressed by
parameter tuning of Lee et al. [18].

The crucial benefit our skeleton based approach offers is the several orders of magnitude
reduction in the number of search locations to detect an error. In Table 1, we list the size
of the volume to be corrected and the number of locations our method needs to query to
detect and correct errors for different datasets used in our experiments. As the third row of
Table 1 indicates that our method reduces the search space by five orders of magnitude while
achieving the same or very close accuracy of the state-of-the-art method.

4.2 Correction on Mouse Neo Cortex SEM Data (MNCSEM)

The second dataset consists of two non-overlapping volumes of 1335× 1809× 338 voxels
(resolution of 6×6×30 nm) and was collected from the authors of [15]. Separate volumes
were used in training and testing. The ground truth of these volumes was generated by
manual tracing on images (not by correcting an existing segmentation). In an attempt to
simulate large-scale neuron reconstruction, we divided the large volumes (both train and
test) into smaller overlapping blocks, generated segmentation independently in each block
and then merged them together to produce the input segmentation to be used in our correction
algorithm. Each small block was segmented using 3D affinity prediction and agglomeration
technique of Parag et al. [24].

The experimental setup and parameters of this experiment were the same as those in the
MVCTEM experiment. The under- and over-segmentation errors for input segmentation,
segmentation oracle output, our merge correction, skeleton oracle on merge corrected vol-
ume, and the result of our merge+split correction are plotted as ×××, ∗∗∗, O, 3, o, respectively
in Figure 5(c). In addition, we also show the VI values of input segmentation computed
at different thresholds of the agglomeration technique in ×××. Our method was able to yield
considerably lower overall VI (o) compared to that of the segmentation output (×××) at a con-
siderably low under-segmentation error. The skeleton oracle output also implies that in the
ideal scenario, the skeletal representation can capture the locations of false split error. The
higher VI values of the oracle outputs are due to the boundary mismatch between the auto-
matic segmentation result and the hand traced ground truth. We have also noticed five orders
of magnitude reduction in search space in this dataset (see Table 1).

1It is worth mentioning here that the correction of [34] used different input segmentations and parameters for Vol 1 and Vol 2
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5 Discussion
In this paper, we describe an efficient and effective deep 3D CNN based correction approach
for EM neural reconstruction. Utilizing the 3D shape information provided by a skeletal rep-
resentation, our method has been shown to fix under- and over-segmentation errors created
by a 3D segmentation algorithm. We show quantitatively that the skeletal representation con-
tains virtually all volumetric information necessary for error correction purposes. Therefore,
with a perfect classifier, one can detect and repair all the mistakes in the volume. By applying
the 3D CNNs only on skeleton joints, our method has been able to match the performance
of the state-of-the-art method.

Operating 3D CNNs only on skeleton joints reduces the search space for error detec-
tion by five orders of magnitude. Such reduction in runtime for error correction modules
is critical for the methods to be scalable on very large, for example, petavoxel size, neural
reconstruction. This is a crucial benefit our method offers that existing methods lack. It is
worth noting that skeletons from segmented volume do not come free of cost – one must take
the time for computing skeletons into account to calculate the overall cost of neural recon-
struction. For the experiments reported in this paper, we did not invest any effort to develop
a new skeleton generation algorithm or optimize the efficiency of existing implementation.
There exist faster algorithms for generating skeletons from 3D bodies that one can use to
improve the speed.

Another direction is to embed the skeleton generation in the region growing and ag-
glomeration algorithms (flood filling [13], zwatershed [18], waterz [7]). The incremental
approach of fitting the largest possible sphere appears to be possible to combine with region
growing technique connecting voxels based on affinity values. This approach will minimize
the overhead of computing the skeletons from segmentations. We hope the results of our
method will motivate research in both computing the skeletons faster and utilizing them for
error correction of volume segmentation.
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