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Abstract

For many image clustering problems, replacing raw image data with features ex-
tracted by a pretrained convolutional neural network (CNN), leads to better clustering
performance. However, the specific features extracted, and, by extension, the selected
CNN architecture, can have a major impact on the clustering results. In practice, this
crucial design choice is often decided arbitrarily due to the impossibility of using cross-
validation with unsupervised learning problems. However, information contained in the
different pretrained CNN architectures may be complementary, even when pretrained
on the same data. To improve clustering performance, we rephrase the image cluster-
ing problem as a multi-view clustering (MVC) problem that considers multiple different
pretrained feature extractors as different “views” of the same data. We then propose
a multi-input neural network architecture that is trained end-to-end to solve the MVC
problem effectively. Our experimental results, conducted on three different natural im-
age datasets, show that: 1. using multiple pretrained CNNs jointly as feature extractors
improves image clustering; 2. using an end-to-end approach improves MVC; and 3. com-
bining both produces state-of-the-art results for the problem of image clustering.

1 Introduction
Image Clustering (IC) is a major research topic in machine learning which attempts to parti-
tion unlabeled images based on their content. It has been used to solve numerous problems
including web-scale image clustering [12], story-line reconstruction from streams of im-
ages [17], and medical image annotation [29]. In this paper, we focus on the IC setting
where the number of clusters is known in advance.

The first successful methods for IC focused on feature selection and used sophisticated
algorithms to handle complex features [9, 11]. Recently, research in IC has shifted towards
using features extracted from Convolutional Neural Networks (CNN) pretrained on Ima-
geNet [23]. In [12, 16, 19, 29], pretrained CNN architectures are used to extract features
from images before clustering. As shown in [24], there exist a variety of publicly available
pretrained CNNs that are able to generate linearly separable latent spaces for many datasets.
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For unsupervised tasks, the choice of a good pretrained architecture cannot be cross-validated
and thus is often arbitrary ([12, 16, 19, 29]). This is potentially problematic as [13] shows
that the choice of architecture has a major impact on the clustering results.

In this paper, we aim to remove the need for this design choice. Following the intuition
that different pretrained deep networks may contain complementary information (see Sec-
tion 2.2), we propose to use multiple pretrained networks to generate multiple feature repre-
sentations. Such representations are treated as different “views” of the data, thus casting the
initial IC problem into Multi-View Clustering (MVC). The success of ensemble methods for
clustering [28] suggests that such an approach can improve overall clustering results. Finally,
building on the recent success of end-to-end clustering methods [1], we also propose a par-
allel feed-forward neural network architecture which allows us to solve the MVC problem
within existing deep clustering frameworks.

1.1 Contributions
We propose to transform IC into MVC by extracting features from several different pre-
trained CNNs. This removes the crucial design choice of feature extractor selection. We also
propose a deep learning approach to address MVC. Our experimental results suggest:

• Image clustering can be improved by using features extracted from several pretrained
CNN architectures, eliminating the need to select just one.

• Multi-view clustering can be improved by adopting end-to-end training.

• These two ideas can be combined to obtain state-of-the-art results at image clustering.

We emphasize that the two steps of the proposed methods can be used independently. Gener-
ating multiple feature representations using several pretrained CNNs can be combined with
any multi-view clustering algorithm. Similarly, the proposed architecture can be leveraged
to solve any MVC problems end-to-end.

2 From Image Clustering to Multi-View Clustering

2.1 Related work
Ensemble clustering (EC) combines different clustering results to obtain a final partition of
the original data with improved quality [28]. EC is composed of two steps: generation,
which creates a set of partitions, and consensus, which integrates partitions into a better
set of clusters. In contrast to EC, Multi-View Clustering (MVC), is concerned with finding
a unified partition from multi-view data [5], which can be obtained by various sensors or
represented with different descriptors. Recently, MVC has received a lot of attention. In
[18], the authors propose different loss functions applied on the concatenated views, in [34]
and [30] lower-dimensional subspaces are learned before clustering with standard methods.

MVC and EC are closely related and have been combined in prior work. In [27], good
MVC results are attained by embedding MVC within the EC framework. The authors lever-
aged the different views to generate independent partitions and then used a co-association-
based method to obtain consensus. In both [10] and [4], generation mechanisms borrowed
from EC are used to generate multiple artificial views of the data. In this paper, we propose
to use multiple pretrained CNNs to generate different feature representations of an image
dataset. Hence, we generate a MVC problem from an ensemble of pretrained CNN feature
extractors.
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2.2 Intuition
In [13], the authors show that different CNN feature extractors, pretrained on the same task
(ImageNet classification), perform differently on a new target IC task. The best feature
extractor does not always correspond to the best performing CNN on ImageNet, and there is
no network which is consistently the best across different IC tasks. The discrepancy between
the results of different methods usually motivates the use of ensemble methods.

In this case, as the different CNNs are pretrained on the same source task, the fact that
they might contain complementary information for a target IC task might seem counter-
intuitive. Indeed, one can expect that all networks have learned the same information. How-
ever, the task of ImageNet classification is so complex that it seems likely that there exist
different latent spaces that can be leveraged to solve it. Consider the following contrived
example: to recognize a car, one network might learn a wheel detector while another one
might detect wing mirrors. Both sets of discriminative features would enable the solution to
the ImageNet classification task, but would also carry very different information that might
be useful in solving a new IC task.

This intuition is visualized on real data in Figure 1, which shows the 2D t-SNE repre-
sentations [20] of the COIL100 dataset [22] for different feature extractors. Although our
experimental results show that features extracted with ResNet50 present better clustering
results on COIL100 (see Section 4), we can see that both VGG19 and Xception can better
separate the circled classes. Hence, it may be expected that using these three feature rep-
resentations as different views of the COIL100 dataset would help improve the clustering
results on the final partition.

(a) Xception (b) ResNet50 (c) VGG19

Figure 1: Best viewed in color. 2D t-SNE visualization of features extracted by the last layer
of three pretrained CNNs for the COIL100 dataset. These features form different comple-
mentary views of the data.

2.3 IC problem reformulation
Let I = {I1, ...In} be a set of n unlabeled natural images, and let FE = {FE1, ...FEm} be
a set of m feature extractors. In theory, FE can be composed of any function mapping raw
pixel representations to lower-dimensional vectors, but in practice, we use pretrained deep
CNNs. The first step in our approach is to generate a set of feature vectors from each element
of FE . ∀i ∈ [1, ...m], we denote the matrix of features representing I as Vi, such that it’s row
Vi,k is the feature vector representing Ik and extracted by FEi:

Vi,k = FEi(Ik). (1)

V = {V1, ...Vm} can be interpreted as a set of views representing the dataset. Thus, V is a
multi-view dataset representing I. The problem of clustering V is a MVC problem, which
can be solved using any MVC algorithm [5]. A visual representation of the multiview gen-
eration mechanism can be seen in the blue frame of Figure 2.
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Figure 2: Two steps of the proposed approach to solve Image Clustering. Generating mul-
tiple “artificial views" of the original data from several CNNs improves the clustering re-
sults by complementarity of the feature representations. Solving Multi-View Clustering
end-to-end (DMVC) improves MVC results while generating a new representation that is
low-dimensional and compact.

3 Deep Multi-View Clustering

3.1 Preliminaries: Deep end-to-end clustering

End-to-end clustering methods based on neural networks have produced excellent results in
the past two years. A complete literature review of the topic is outside the scope of this
paper, for that we refer the reader to the following recent survey [1]. However, we describe
two classes of methods relevant to our approach in more detail.

In [33], the authors introduce a connectivity-based clustering method called Joint Unsu-
pervised Learning of deep representations and image clusters (JULE). This approach learns
a new representation of the initial features with a neural network. The training of the neural
network is embedded within the generic agglomerative clustering framework. The algorithm
iteratively merges clusters and trains the neural network to minimize a clustering loss based
on the affinity computed from the K-nearest neighbors of each point. This approach is cur-
rently producing state-of-the-art results on many image datasets.

In [32], the authors propose an end-to-end centroid-based clustering method, unsuper-
vised Deep Embedding for Clustering analysis (DEC). This approach begins by pretraining
a multi-layer perceptron (MLP) using an auto-encoder input reconstruction loss function.
Then, the MLP is fine-tuned to output a set of cluster centers which define cluster assign-
ments. Both the network optimization and the centroid optimization are based on the min-
imization of the Kullback-Leibler (KL) divergence between the current distribution of the
features and an auxiliary target distribution, derived from high-confidence predictions. Im-
proved Deep Embedding Clustering (IDEC), introduced in [14], modifies DEC by replacing
the loss function with a combined loss, which takes into account the auto-encoder recon-
struction loss during fine tuning. This approach preserves the local structure of the data and
appears to improve the DEC clustering results.
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3.2 Deep multi-view clustering (DMVC)
In this section, we define our approach for solving MVC. Let Cee be any deep clustering
framework. Cee is defined by a loss function L and a procedure P to optimize the loss
function. Multiple approaches have already been adopted to define the clustering-oriented
loss L and the optimization procedure P (examples are discussed in Section 3.1). Applying
Cee to a new unsupervised dataset D requires one to specify a function fθ , parameterized
by θ , which transforms D into a new feature space Dθ = fθ (D). From there, Cee applies
P to minimize L(θ ,D), producing both a good representation Dθfinal and a set of cluster
assignments yfinal.

Architecture In general, fθ is selected to be a neural network and the choice of the archi-
tecture depends on the kind of dataset. For example, when dealing with large images, fθ can
be a CNN and when D is composed of smaller vectors, fθ can be a multi-layer perceptron
(MLP). In the case of MVC, each element of D is a collection of vectors. For example,
the kth element of D is written as {Vi,k, ∀i ∈ [1, ...m]}. For this reason, to embed MVC
into a deep clustering framework, we need to define a different neural network architecture
for fθ , which we call MVnet. MVnet consists of a set of m independent MLPs, denoted
ml p = {ml p1, ...ml pm}, such that, ∀i ∈ [1, ...m], the dimension of the input layer of ml pi
is equal to the dimension of the output layer of the associated FEi. We also define ml pout,
another MLP with input layer dimension equal to the sum of the dimensions of the output
layers over the elements of ml p. Thus, an MVnet is composed of three layers: a parallel
layer containing all the elements of ml p, followed by a concatenating layer which feeds into
ml pout. A visual representation of the MVnet architecture can be seen in the red box in
Figure 2. We note that all the elements of ml p are independent and do not share any weights.

Training DMVC is a generic framework and MVnet can be optimized using most deep
end-to-end clustering approaches. Given a deep clustering framework, MVnet should be
trained on the dataset V , from which sample K is V[K] = {Vi,K , i ∈ [1, ...m]}. In our ex-
perience, training MVnet from scratch does not provide good results. Instead, it is better
to pretrain each ml pi on Vi using a deep clustering framework. Then, pretrain ml pout on
the concatenation of the new feature representations extracted by the pretrained members
of ml p. Finally, after initializing its weights with the appropriate pretrained MLPs, MVnet
can be refined end-to-end on V to improve both the feature representation and the clustering
results.

Clustering The method for obtaining the final cluster assignments depends on the deep
clustering framework selected. For example, using DEC, the optimization procedure will
output a set of centroids in the new feature space, which can straightforwardly be used to as-
sign a cluster to each image. Using JULE, cluster assignments are generated during training.
Data points are gradually grouped together to form clusters while fθ is being trained.

4 Experimental setup

4.1 Datasets
We use three different image datasets to validate our work. COIL100 [22] is composed of
multiple images of the same objects from different angles. Images are centered around the
object and background is neutral. UMist [31] is a facial recognition database. For each
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person, multiple pictures are taken under different light conditions and orientations. Each
image is centered around the face with a neutral background. VOC2007 [8] is an image
classification dataset presenting visual objects from various classes in a realistic scene. This
is a very challenging dataset for clustering: objects are not pre-segmented, backgrounds are
complex, and the images are quite large. Data statistics can be found in Table 1.

Table 1: Statistics of the datasets used for our experiments.

Dataset COIL100 UMist VOC20071

# Images 7200 575 2841
# Classes 100 20 20

Image Size2 128x128 112x92 Variable
1 We use a modified version of the VOC2007 test set. All the images presenting two or more labels

have been removed in order to have ground truth to evaluate clustering quality.
2 The images must be preprocessed to match the input sizes of the CNN used (224×224 for ResNet50

and VGG; 299×299 for Inception and Xception). This can be done with anti-aliasing interpola-
tion.

4.2 Other methods for comparison
4.2.1 DMVC evaluation

We implemented several different versions of the proposed DMVC approach. First, we con-
sider a framework in which the MVnet weights are fixed after initialization (no end-to-end
fine-tuning). We denote this DMVC-fix. DMVC-fix is implemented with two different end-
to-end clustering frameworks, JULE [33] and IDEC [14]. Finally, the full DMVC pipeline is
implemented within the JULE framework, which seems to perform the best on every dataset.
This enables usto evaluate the influence of end-to-end training on multi-view datasets.

To evaluate the DMVC framework, we compare it against two other MVC methods.
Let C stand for any clustering algorithm. The first naive approach consists in concatenating
the different views and applying C on the merged representation. We denote this approach
CC (concatenate + cluster). The second approach is based on ensemble clustering and is
derived from [27]. Here we generate a set of partitions P = {P1, ...,Pm} by applying C on
each element of V . Then, the co-association matrix (CAM) of P is built, measuring how
many times any pair of elements have been clustered together. The CAM is then used as
a graph-distance matrix by any connectivity-based clustering algorithm (spectral clustering,
agglomerative clustering, etc.). In our result tables, this approach is referred to as Multi-View
Ensemble Clustering (MVEC). MVEC has been shown to produced state-of-the art results
on MV clustering recently [27].

4.2.2 Multiple CNN feature extraction evaluation

For any pretrained CNN, we also report the result of applying C to the single set of features
it extracts. This is informative in evaluating the impact of multi-view generation. For each
approach, both JULE and IDEC are used for C. KMeans (KM) [2] and Agglomerative Clus-
tering (AC) [21], two standard clustering methods, are also applied to every fixed CNN, CC
and MVEC. Using simple clustering methods allows us to evaluate how multiple CNNs can
benefit image clustering independently of other factors.
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4.3 Practical implementations

In our experiments, we used the Keras implementations and pretrained weights [6] of five
CNN architectures: two VGG architectures (VGG16 and VGG19 [25]), one ResNet archi-
tecture (ResNet50 [15]), and two Inception-like architectures: (InceptionV3 [26] and Xcep-
tion [7]). When we discuss features extracted from a given CNN, we always refer to the
activation just before the final linear layer for ImageNet classification. This layer is an aver-
age pooling layer for InceptionV3, Xception and ResNet50, and a fully-connected layer for
both VGG architectures.

DMVC is a framework for unsupervised classification, hence, we should not do any
hyperparameter tuning. In all of our experiments, we use default parameters for every sub-
algorithm used. For both KM and AC we use the default configuration of the scikit-learn
implementations [3]. For JULE and IDEC, we use the hyperparameters recommended by the
authors (see original papers for more details). We only increase the learning rate to 5×102

for the MVnet fine tuning, as this appears to be consistently better for all the three datasets.
Finally, for ensemble clustering, the co-association matrix is clustered with agglomerative
clustering with average linkage. For IDEC, we generate centroids with a multilayer per-
ceptron (MLP) with dimensions d−500−500−2000−N, where d is the extracted feature
vector dimension and N is the number of classes that we are searching for. For JULE, the
representation learning network is a MLP with dimensions d−160−160. For both methods,
hidden layer activations are rectified linear units. The building blocks of MVnet are of the
shapes defined above.

The clustering results are evaluated using normalized mutual information (NMI), which
is commonly used in unsupervised classification. NMI ranges between 0 and 1, with 1
representing perfect accuracy.

5 Experimental results

5.1 Clustering results

The clustering results on the three datasets are reported in Table 2. Table 3 reports the
average results over the three datasets for each method. Computing averages makes sense
in an unsupervised setting because, as cross-validation is impossible, a clustering pipeline
needs to perform well on every dataset. BFN is the best fixed network over all datasets.
The method proposed in this paper is composed of two steps: multi-CNN feature extraction
and deep multi-view clustering. Each of these contributions can be leveraged separately or
jointly, thus the results are discussed as follows:

• In Section 5.1.1, we discuss the benefits of using several feature extractors instead of
one for IC,

• In section 5.1.2 and 5.2, we discuss the advantages of using an end-to-end approach to
address MVC,

• In Section 5.1.3 and 5.2, we explain the upsides of combining the two approaches to
solve IC.
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Table 2: Clustering performances (NMI) for different IC methods. The proposed multi-view
generation methods is evaluated by comparing the five first rows (independent CNN feature
extractors) and the four last ones (multi-CNN features). The proposed end-to-end method to
solve MVC is evaluated by comparing DMVC to CC and MVEC.

VOC2007 COIL100 UMist
JULE IDEC KM AC JULE IDEC KM AC JULE IDEC KM AC

VGG16 0.687 0.666 0.660 0.665 0.989 0.963 0.939 0.956 0.920 0.771 0.707 0.755
VGG19 0.684 0.677 0.663 0.649 0.994 0.963 0.941 0.948 0.933 0.742 0.729 0.729

InceptionV3 0.768 0.760 0.620 0.675 0.984 0.957 0.942 0.953 0.823 0.705 0.646 0.692
Xception 0.759 0.779 0.668 0.720 0.986 0.955 0.933 0.955 0.829 0.707 0.591 0.678
ResNet50 0.679 0.691 0.681 0.649 0.997 0.973 0.962 0.967 0.919 0.784 0.686 0.723

CC 0.718 0.587 0.698 0.698 0.995 0.886 0.944 0.952 0.855 0.699 0.681 0.700
MVEC 0.785 0.782 0.728 0.741 0.996 0.977 0.958 0.967 0.963 0.797 0.748 0.761

DMVC-fix 0.792 0.730 N/A N/A 0.996 0.973 N/A N/A 0.963 0.737 N/A N/A
DMVC 0.810 - N/A N/A 0.995 - N/A N/A 0.971 - N/A N/A

The two best methods for each column are in blue, the two best overall methods are in bold. N/A
is for incompatible methods.

5.1.1 IC can be improved by using features extracted from several pretrained CNNs

Methods representing the data with different views extracted from multiple CNNs consis-
tently outperform every method with a fixed feature extractor. This is also true with KM and
AC, which supports the proposed way to solve image clustering as multi-view clustering,
even before refinement. The only exception is for the COIL100/ResNet50 combination, but
the results are similar. Moreover, NMI is very close to 1 for this configuration, which possi-
bly indicates that the difference in performance derives from a few outliers. The importance
of multi-view generation can also be observed in Table 3. The scores reported in Table 3 rep-
resent how well each method performs “in general,” and show that there is no fixed feature
extractor pipeline which is consistently better than a MV method across multiple datasets.

Table 3: Average NMI scores over the three datasets using JULE. The Best Fixed Network
(BFN) represents the single network which performs best on average. As the feature extrac-
tor cannot be specifically selected for a given dataset, comparing multi-view results to BFN
is relevant.

Clustering routine BFN CC MVEC DMVC-fix DMVC
Average NMI score 0.870 0.856 0.915 0.917 0.925

Such results validate the hypothesis that different pretrained architectures contain com-
plementary information about a new unsupervised dataset and justify the use of multi-view
generation from different CNN architectures rather than a fixed CNN for feature extraction.
In particular, for VOC2007, gathering results from multiple CNNs using MVEC or DMVC
is highly beneficial, which suggests that the proposed MV framework can improve clustering
for complex realistic datasets. Finally, it is interesting to note that, most of the time, CC per-
forms worse than fixed networks. This means that features extracted from each CNN should
first be processed independently before being used for clustering. This gives an experimental
justification for why subnetworks of MVnet should first be pretrained separately.
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5.1.2 MVC can be improved by adopting an end-to-end approach

For both VOC2007 and UMist, fine tuning MVnet using the JULE framework improves the
clustering results over the DMVC with no end-to-end retraining (DMVC-fix), which vali-
dates the use of an end-to-end approach for MVC. Also, apart from COIL100, where results
are very similar, DMVC outperforms MVEC. For COIL100, DMVC does not improve clus-
tering over ResNet50. A possible explanation is that ResNet50 already separates the clusters
well (NMI = 0.997) and there is not much left to be learned. Another reason for using deep
methods for solving MVC is discussed in Section 5.2, where it is shown that solving MVC
end-to-end generates a more compact, unified representation.

5.1.3 Combining multiple CNNs multi-view generation and DMVC produces
state-of-the-art results at IC

To the best of our knowledge, the results reported in Table 2 represent the new state-of-the-
art for clustering these datasets. The use of multiple pretrained feature extractors, combined
with the proposed DMVC framework, enables us to outperform other approaches on the
tested IC problems. The results indicate that, when facing a new unsupervised image clas-
sification dataset without any specific information about the data, we recommend that one
adopt the approach proposed in this paper: transform the problem into MVC from all avail-
able pretrained CNNs and use DMVC (trained within the JULE framework) to solve it.

5.2 Learned representations

The quality of a clustering algorithm can also be evaluated by the quality of the new feature
representation it generates. To analyze the quality of the feature representation extracted with
DMVC, we re-cluster several feature representations, from different stages of the DMVC
pipeline, using KM. KM is a simple clustering algorithm which performs better on rep-
resentations presenting compact clusters, which are distant from each others. We choose
InceptionV3 to represent the fixed CNN feature representation methods as it performs best
on VOC2007. Results are reported in Table 4 and clearly demonstrate that we generate better
features as we progress through the DMVC pipeline.

Table 4: Comparison of clustering performance (NMI) of KMeans applied to different repre-
sentations of the dataset. If a feature representation gets a high score, it means that it presents
compact clusters which are distant from each others.

VOC2007 COIL100 UMist
InceptionV3 0.624 0.932 0.680

InceptionV3 + JULE 0.754 0.938 0.775
DMVC-fix 0.759 0.961 0.895

DMVC 0.786 0.964 0.973

Figure 3 provides a visual way to evaluate DMVC features. It is a 2d t-SNE representation of
different features at different stages of DMVC for the UMist dataset. Comparing subfigures
(b) and (c), we see that using multiple CNNs enables to obtain a better separated feature
representation of the dataset. Comparing subfigures (c) and (d), we see that fine tuning
DMVC end-to-end produces representations that generate more compact clusters.
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(a) InceptionV3 features (b) InceptionV3 + JULE (c) DMVC-fix (d) DMVC

Figure 3: Best viewed in color. 2D t-SNE visualization of the features extracted from the
UMist dataset at different stages of the DMVC framework. The feature representation be-
comes more compact and better separated as we progress in the DMVC pipeline.

6 Conclusion

We propose a two-step approach to solving the image clustering problem. First, we generate
multiple representations of each image using pretrained CNN feature extractors, and refor-
mulate the problem as a multi-view clustering problem. Second, we define a multi-input
neural network architecture, MVnet, which is used to solve MVC in an end-to-end manner
using any deep clustering framework. Implementing this pipeline with JULE is state-of-the-
art and sets a new benchmark for image clustering on the datasets presented. This approach
also has the advantage of removing the design choice of selecting a single feature extractor.

Our experimental results illustrate that different CNNs, pretrained on the same task, may
contain different and complementary information about a dataset. Differences may arise
from a number of sources including the architecture (number of layers, layer shape, pres-
ence of skip connections, etc.), regularization methods, or loss functions used for training.
Investigating which parameters influence knowledge transfer to unsupervised tasks is an in-
teresting axis of research for future work. Finally, we note that pretrained CNNs are used
as feature extractors for many applications, not just clustering. Using multiple pretrained
CNNs to define a multi-view learning problem may be appealing for other tasks where com-
plementary information present in pretrained feature extractors may improve performance.
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