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Abstract

Novelty detection is crucial for real-life applications. While it is common in activity
recognition to assume a closed-set setting, i.e. test samples are always of training cate-
gories, this assumption is impractical in a real-world scenario. Test samples can be of
various categories including those never seen before during training. Thus, being able to
know what we know and what we don’t know is decisive for the model to avoid what can
be catastrophic consequences. We present in this work a novel approach for identifying
samples of activity classes that are not previously seen by the classifier. Our model em-
ploys a voting-based scheme that leverages the estimated uncertainty of the individual
classifiers in their predictions to measure the novelty of a new input sample. Further-
more, the voting is privileged to a subset of informed classifiers that can best estimate
whether a sample is novel or not when it is classified to a certain known category. In a
thorough evaluation on UCF-101 and HMDB-51, we show that our model consistently
outperforms state-of-the-art in novelty detection. Additionally, by combining our model
with off-the-shelf zero-shot learning (ZSL) approaches, our model leads to a significant
improvement in action classification accuracy for the generalized ZSL setting.

1 Introduction
Human activity recognition from video is a very active research field, with a long list of
potential application domains, ranging from autonomous driving to security surveillance [1,
25]. However, the vast majority of published approaches are developed under the assumption
that all categories are known a priori [5, 11, 13, 34, 40, 41]. This closed set constraint rep-
resents a significant bottleneck in the real world, where the system will probably encounter
samples from various categories including those never seen during development. The set of
possible actions is dynamic by its nature, possibly changing over time. Hence, collecting
and maintaining large scale application-specific datasets of video data is especially costly
and impractical. This raises a crucial need for the developed models to be able to identify
cases where they are faced with samples out of their knowledge domain. In this work, we
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explore the field of activity recognition under open set conditions [4, 30, 31], a setting which
has been little-explored before especially in the action recognition domain [19].

In an open world application scenario, an action recognition model should be able to
handle three different tasks: 1) the standard classification of previously seen categories; 2)
knowledge transfer for generalization to new unseen classes (e.g. through zero-shot learn-
ing); 3) and knowing how to automatically discriminate between those two cases. The third
component of an open set model lies in its ability to identify samples from unseen classes
(novelty detection). This is closely linked to the classifier’s confidence in its own predictions,
i.e. how can we build models, that know, what they do not know? A straight-forward way
is to employ the Softmax output of a neural network (NN) model as the basis for a rejection
threshold [27, 29]. Traditionally, action recognition algorithms focus on maximizing the
top-1 performance on a static set of actions. Such optimization leads to Softmax scores of
the winning class being strongly biased towards very high values [9, 14, 22, 39]. While giv-
ing excellent results in closed set classification, such overly self-confident models become a
burden under open set conditions. A better way to asses NN’s confidence, is to rather predict
the probability distribution with Bayesian neural networks (BNN). Recently, Gal et al. [9]
introduced a way of efficiently approximating BNN modeled as a Gaussian Process [28] and
using dropout-based Monte-Carlo sampling (MC-Dropout) [9]. We leverage the findings of
[9] and exploit the predictive uncertainty in order to identify activities of previously unseen
classes.

This work aims at bringing conventional activity recognition to a setting where new
categories might occur at any time and has the following main contributions: 1) We present
a new model for novelty detection for action recognition based on the predictive uncertainty
of the classifiers. Our main idea is to estimate the novelty of a new sample based on the
uncertainty of a selected group of output classifiers in a voting-like manner. The choice of
the voting classifiers depends on how confident they are in relation to the currently predicted
class. 2) We adapt zero-shot action recognition models, which are conventionally applied
solely on samples of the unseen classes, to the generalized case (i.e. open set scenario) where
a test sample may originate from either known or novel categories. We present a generic
framework for generalized zero-shot action recognition, where our novelty detection model
serves as a filter to distinguish between seen and novel categories, passing the sample either
to a standard classifier or a zero-shot model accordingly. 3) We extend the custom evaluation
setup for action recognition to the open-set scenario and formalize the evaluation protocol
for the tasks of novelty detection and zero-shot action recognition in the generalized case
on two well-established datasets, UCF-101 [36] and HMDB-51 [15]. The evaluation shows,
that our model consistently outperforms conventional NNs and other baseline methods in
identifying novel activities and was highly successful when applied to generalized zero-shot
learning.

2 Related Work
Novelty Detection Various machine learning methods have been used for quantifying the
normality of a data sample. An overview of the existing approaches is provided by [6,
24]. A lot of today’s novelty detection research is handled from the probabilistic point of
view [16, 21, 24, 35], modeling the probability density function (PDF) of the training data,
with Gaussian Mixture Models (GMM) being a popular choice [24]. The One-class SVM
introduced by Schölkopf et al. [33] is another widely used unsupervised method for novelty
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detection, mapping the training data into the feature space and maximizing the margin of
separation from the origin. Anomaly detection with NNs has been addressed several times
using encoder-decoder-like architectures and the reconstruction error [43]. A common way
for anomaly detection is to threshold the output of the neuron with the highest value [12,
17, 29]. Recently, Hendrycks et al. [12] presented a baseline for deep-learning based visual
recognition using the top-1 Softmax scores and pointed out, that this area is under-researched
in computer vision.

The research of novelty detection in videos has been very limited. A related topic
of anomaly detection has been studied for very specific applications, such as surveillance
[17, 24] or personal robotics[19]. Surveillance however often has anomalies, such as Rob-
bery or Vandalism, present in the training set in some form [20, 38] which violates our
open-set assumption. The work most similar to ours is the one of Moerland et al. [19] where
Hidden-Markov-Model is used to detect unseen actions from skeleton features. However,
[19] considers only a simplified evaluation setting using only a single unseen action cat-
egory in testing. In contrast to [19] our model is based on a deep neural architecture for
detecting novel actions which makes it applicable to a wide range of modern action recogni-
tion models. Furthermore, we consider a challenging evaluation setting on well-established
datasets where novel classes are as diverse as those seen before. Additionally, we go beyond
novelty detection and evaluate how well our model generalizes to classifying novel classes
through zero-shot learning. Our model leverages approximation of BNN using MC-Dropout
as proposed by Gal et al. [9], which has been successfully applied in semantic segmenta-
tion [14] and active learning [10]. We extend the BNN approximation to the context of open
set action recognition where we incorporate the uncertainty of the output neurons in a voting
scheme for novelty detection.

Zero-Shot Action Recognition Research on human activity recognition under open set
conditions has been sparse so far. A related field of Zero-Shot Learning (ZSL) attempts to
classify new actions without any training data by linking visual features and the high-level
semantic descriptions of a class, e.g. through action labels. The description is often repre-
sented with word vectors by a skip-gram model (e.g. word2vec [18]) previously trained on a
large-scale text corpus. ZSL for action recognition gained popularity over the past few years
and has also been improving slowly but steadily [26, 42, 45, 46, 47]. In all of these works,
the categories used for training and testing are disjoint and the method is evaluated on unfa-
miliar actions only. This is not a realistic scenario, since it requires the knowledge of whether
the activity belongs to a known or novel category a priori. Generalized zero-shot learning
(GZSL) has been recently studied for image recognition and a drastic performance drop of
classical ZSL approaches such as ConSE [23] and Devise [7], has been reported [44]. As
the main application of our novelty detection approach, we implement a framework for ZSL
in the generalized case and integrate our novelty detection method to distinguish between
known and unknown actions.

3 Novelty Detection via Informed Voting
We present a new approach for novelty detection in action recognition. That is, given a new
video sample x, our goal is to find out whether x is a sample of a previously known category
or if it belongs to a novel action category not seen before during training.

Let A = {A1, ...AK} be the set of all K known categories in our dataset. Then p(Ai|x)
is the classifier probability of action category Ai given sample x. Conceptually, our novelty
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Figure 1: Distribution of predictive mean and uncertainty as a 2-D histogram of the leading
classifier (highest predictive mean) for the input with known and unseen actions (HMDB-51
dataset). Red denotes common cases (high frequency), blue denotes unlikely cases.

detection model is composed of two main components: 1) the leader and 2) the council.
The leader refers to the classifier with the highest confidence score in predicting the class
of a certain sample x. For example, in classification neural networks it is common to select
the leader based on the highest softmax prediction score. The leader votes for sample x
being of its own category and assuming that the class of x is one of the known categories,
i.e. class(x) = A∗ ∈ A. The council, on the other hand, is a subset of classifiers that will
help us validating the decision of a specific leader. In other words, the council members of
a leader representing the selected class A∗ are a subset of the classifiers representing the rest
of the classes, i.e. CA∗ ⊆ A \ {A∗}. These members are elected for each leader individually,
i.e. each category classifier in our model has its own council. A council member is selected
based on its certainty variance in relation to a leader. Whenever a leader decides on the
category of a sample x, its council will convene and vote on the leader decision. Then, the
council members will jointly decide whether the leader made the correct decision or it was
mistaken because the sample is actually from a novel category.

Next, we explain in details how we measure the uncertainty of a classifier (Section 3.1);
choosing a leader and its council members (Section 3.2); and, finally, the novelty voting
procedure given new sample (Section 3.3).

3.1 Measuring Classifier Uncertainty

In this section, we tackle the problem of quantifying the uncertainty of a classifier given a
new sample. The estimated uncertainty is leveraged later by our model to select the council
members as we will see in Section 3.2.

In the context of deep learning, it is common to consider the single point estimates
for each category, represented by the output of the softmax layer, as a confidence mea-
sure [3, 12, 17, 29]. However, this practice has been highlighted in literature to be inaccurate
since a model can be highly uncertain even when producing high prediction scores [22, 39].
Bayesian neural networks (BNNs) offer us an alternative to the point estimate models and
are known to provide a well calibrated estimation of the network uncertainty in its output.
Given the network parameters ω and a training set S, the predictive probability of the BNN
is obtained by integrating over the parameter space. The prediction p(Ai|x,S) is therefore
the mean over all possible parameter combinations weighted by their posterior probability:

p(Ai|x,S) =
∫

ω

p(Ai|x,ω)p(ω|S)dω (1)
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Figure 2: Council members and uncertainty statistics for three different leaders (HMDB-51).
The classifier’s average uncertainty and its variance (area surrounding the point) illustrate
how it changes its belief in the leader for different data inputs. Blue points are in the council
of the current leader, while red points are classifiers that did not pass the credibility threshold.

However, BNNs are known to have a difficult inference scheme and high computation cost [9].
Therefore, we leverage the robust model proposed by [9] to approximate the predictive mean
and uncertainty of the BNN posterior distribution with network parameters modeled as a
Gaussian Process (GP). This method is based on dropout regularization [37], a widely used
technique which has proven to be very effective against overfitting. That is, it leverages
the dropout at each layer in the network to draw the weights from a Bernoulli distribution
with probability p. At test time, the dropout is iteratively applied for M forward passes for
each individual sample. Then, the statistics of the neural network output represents a Monte-
Carlo (MC) approximation of the neuron’s posterior distribution This approach is referred to
as MC-Dropout [9].

Specifically, let x be a representation generated by a convolutional neural network (CNN)
for an input sample z. We add a feedforward network on top of the CNN with two fully-
connected layers with weight matrices W1 and W2. Instead of using a deterministic Softmax
estimate in a single forward pass as it is common with CNNs, we now compute the mean
over M stochastic iterations as our prediction score:

E(Ai|x)≈
1
M

M

∑
m=1

softmax(relu(xT D1W1 +b1)D2W2), (2)

where relu(·) is the rectified linear unit (ReLU) activation function, b1 is the bias vector of
the firs layer. Additionally, D1 and D2 are diagonal matrices where the diagonal elements
contain binary values, such that they are set to 1 with probability 1− p and otherwise to 0.

We further empirically compute the model’s predictive uncertainty as the distribution
variance:

U(Ai|x)≈ s2 =
1

M−1

M

∑
m=1

[softmax(relu(xT D1W1 +b1)D2W2)−E(Ai|x)]2 (3)

Fig. 1 shows how predictive mean and uncertainty are distributed for samples of known
and novel classes. The plot depicts clearly different patterns for the resulting probability
distributions in these two cases which illustrates the potential of Bayesian uncertainty for
novelty detection.

3.2 Selecting the Leader and its Council
Now that we can estimate the confidence and uncertainty of each category classifier in our
model, we describe in this section how to choose the leader and select it council members.
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The Leader. Rather than selecting the leader using a point estimate based on the softmax
scores of the output layer, we leverage here the more stable dropout-based estimation of
the prediction mean. Hence, the leader is selected as the classifier with highest expected
prediction score over M sampling iterations:

A∗ = argmax
Ak∈A

E(Ai|x), (4)

where E(Ai|x) is estimated according to Eq. 2.
The Council. The leader by itself can sometimes produce highly confident predictions for
samples of unseen categories [39]. Hence, we can not rely solely on the leader confidence to
estimate whether a sample is of a novel category or not. Here, the rest of the classifiers can
help in checking the validity of the leader’s decision. We notice that these classifier exhibit
unique patterns in regard to a certain leader. They can be grouped into two main groups:
the first shows high uncertainty when the leader is correctly classifying a sample; while the
second shows a very low uncertainty and are in agreement with the leader.

Guided by this observation, we select the members of the Council C∗A for a certain
leader A∗ based on their uncertainty variance in regards to samples of the leader’s cate-
gory, i.e. x ∈ A∗. In other words, those classifiers that exhibit very low uncertainty when the
leader is classifying samples of its own category are elected to join its council. During the
training phase, we can select the council members for each classifier in our model. Here, we
randomly split the initial set into a training set Strain which is used for model optimization
and parameter estimation, and a holdout set Sholdout which is used for choosing the council
member for all the classifiers iteratively. Specifically, we use a 9/1 split for the training and
the holdout splits. We first estimate the parameters of our deep model ω using Strain. Then,
we evaluate our model over all samples from Sholdout . For each category classifier in our
model, we construct a set of true positive samples SAi

t p ⊆ Sholdout . For each sample xn ∈ SAi
t p,

we estimate the uncertainty U(A j|xn) of the rest of the classifiers A j ∈ A \ {Ai} using the
MC-Dropout approach. Then, the variance of these classifiers’ uncertainty is estimated as:

Var(A j|Ai) =
1
N

N

∑
n=1

(U(A j|xn)−E[U(A j|x)])2 (5)

where N = |SAi
t p| and E[U(A j|x)] is the expectation of the uncertainty of the classifier A j over

samples x ∈ SAi
t p. Finally, classifiers with a variance lower than a fixed credibility threshold

Var(A j|Ai)< c are then elected as members of Ai council.
Fig. 2 shows three leaders and their elected councils according to our approach. We see,

for example, that eight classifiers did not pass the credibility threshold for the leader drink
and were excluded from its council. The variance of the uncertainty is especially high for sit
and eat in this case. This is expected since those actions often occur in a similar context.

3.3 Voting for Novelty
Given the trained deep model and the sets of all council members from the previous step,
we can now generate a novelty score for a new sample x as follows. First, we calculate
the prediction mean E[p(Ai|x)] and uncertainty U(Ai|x) of all the action classifiers using M
stochastic forward passes and MC-Dropout. Then, the classifier with the maximum predicted
mean is chosen as the leader. Finally, the council members of the chosen leader vote for the
novelty of sample x based on their estimated uncertainty (see Algorithm 3.3).
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Examples of such voting outcome for three different leaders are illustrated in Fig. 3.
In case of category cartwheel, we can see that when the leader is voting indeed for the
correct category, all council members show low uncertainty values therefore resulting in a
low novelty score, as uninformed classifiers (marked in red) are excluded. However, we
observe very different measurements for an example from an unseen category clap which is
also predicted as cartwheel. Here, multiple classifiers which are in the council (marked in
blue) show unexpected high uncertainty values (e.g. eat, laugh ), therefore discrediting the
leader decision and voting for a high novelty score.

Algorithm Novelty Detection by Voting of the Council Neurons
Input: Input sample x, Classification Model ω , K sets of Council members for each
Leader: {CA1 , ...,CAK}
Output: Novelty score υ(~x)

1: Inference using MC-Dropout
Preform M stochastic forward passes: pm

Ai
= p(Ai|x,ωm);

2: for all Ai ∈ A do
3: Calculate the prediction mean and uncertainty: E(p(Ai|x)) and U(Ai|x)
4: end for
5: Find the Leader: A∗ = argmax

Ak∈A
p(Ai|x)

6: Select the Council : CA∗

7: Compute the novelty score : υ(x) =
∑Ai∈CA∗ U(Ai|x)

|CA∗ |

Model variants. We refer to our previous model as the Informed Democracy model since
voting is restricted to the council members which are chosen in an informed manner to check
the decision of the leader. In addition to the previous model, we consider two other variants
of our model:

1. The Uninformed Democracy model: Here, there is no council and all classifiers have
the right to vote for any leader. Hence, step 7 in Algorithm 3.3 is replaced with υ(x) =
∑Ai∈A U(Ai|x)

K .

2. The Dictator model: unlike the previous model, this one leverages only the leader’s
uncertainty in its own decision to predict the novelty of the sample, i.e. υ =U(A∗|~x).

Open set and zero-shot learning Once our model generated the novelty score υ(x), we
can decide whether x is a sample from a novel category or not using a sensitivity threshold τ .
This threshold can be estimated from a validation set using the equal error rate of the receiver
operating characteristic curve (ROC). Then, if υ(x) < τ the Council votes in favor of the
Leader and its category is taken as our final classification result. Otherwise, an unknown
activity class has been identified. In this case, the input could be passed further to a module
in charge of handling unfamiliar data, such as a zero-shot learning model or a user to give
the sample a new label in the context of active learning.

4 Evaluation
Evaluation setup Since there is no established evaluation procedure available for ac-
tion recognition in open-set conditions, we adapt existing evaluation protocols for two well-
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Figure 3: Examples of selective voting for the novelty score of different activities. The first
row depicts the case where the samples are of known classes and second row for those of
novel classes. Red points highlight classifiers, which were excluded from to the council of
the current leader. Their uncertainty is, therefore, ignored when inferring the novelty score.

established datasets, HMDB-51 [15] and UCF-101 [36], for our task†. We evenly split each
dataset into seen/unseen categories (26/25 for HMDB-51 and 51/50 for UCF-101). Samples
of unseen classes will not be available during training, while samples of the remaining set
of seen classes is further split into training (70%) and testing (30%) sets, thereby adapting
the evaluation framework of [42] for the generalized ZS learning scenario. For each dataset,
we randomly generate 10 splits and report the average and standard deviation of the recogni-
tion accuracy. Using a separate validation split, we optimize the credibility threshold c and
compute the threshold for rejection τ for each category as the Equal Error Rate of the ROC.

Architecture details We augment the RGB-stream of the I3D architecture [5] with MC-
Dropout. The model is pre-trained on the Kinetics dataset, as described in [5]. The last
average pooling is connected to two fully connected layers: a hidden layer of size 256 and
the final softmax-classifier layer. These are optimized using SGD with momentum of 0.9,
learning rate of 0.005 and dropout probability of 0.7 for 100 epochs. We sample the out-
put scores for M = 100 stochastic forward passes applied on the two layers preceding the
classifier, while the credibility threshold c is set to 0.001.

Baselines We compare our model to three popular methods for novelty and outlier detec-
tion: 1) a One Class SVM [32, 33] with RBF kernel (upper bound on the fraction of training
errors ν set to 0.1); 2) a GMM [24, 48] with 8 components; 3) and Softmax probabilities
[12, 29] as the value for thresholding. Both SVM and GMM were trained on normalized fea-
tures obtained from last average pooling layer of I3D pre-trained on the Kinetics dataset [5].

Novelty Detection We evaluate the novelty detection accuracy in terms of a binary classi-
fication problem, using the area under curve (AUC) values of the receiver operating charac-
teristic (ROC) and the precision-recall (PR) curves.

We show the robustness of our approach in comparison to the baseline methods in
Table 1. All variants of our model clearly outperform the conventional approaches and
achieve an ROC-AUC gain of over 7% on both datasets. Along our model variants, Informed

†Dataset splits used for novelty detection and generalized zero-shot action recognition are provided at
https://cvhci.anthropomatik.kit.edu/∼aroitberg/novelty_detection_action_recognition
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Novelty Detection Model HMDB-51 UCF-101
ROC AUC % PR AUC % ROC AUC % PR AUC %

Baseline Models
One-class SVM 54.09 (±3.0) 77.86 (±4.0) 53.55 (±2.0) 78.57 (±2.4)
Gaussian Mixture Model 56.83 (±4.2) 78.40 (±3.6) 59.21 (±4.2) 79.50 (±2.2)
Conventional NN Confidence 67.58 (±3.3) 84.21 (±3.0) 84.28 (±1.9) 93.92 (±0.7)

Our Proposed Model based on Bayesian Uncertainty
Dictator 71.78 (±1.8) 86.81 (±2.5) 91.43 (±2.3) 96.72 (±1.0)
Uninformed Democracy 73.81 (±1.7) 87.83 (±2.3) 92.13 (±1.8) 97.15 (±0.7)
Informed Democracy 75.33 (±2.7) 88.66 (±2.3) 92.94 (±1.7) 97.52 (±0.6)

Table 1: Novelty detection results evaluated as area under the ROC and PR-curves for iden-
tifying previously unseen categories (mean and standard deviation over ten dataset splits).

Democracy has proven to be the most effective strategy for novelty score voting, outperform-
ing the Dictator by 5.5% and 1.4%, while Uninformed Democracy achieved second-best re-
sults. We believe that smaller differences in performance gain on the UCF-101 data are due
to the much higher supervised classification accuracy on this dataset. Since the categories of
UCF-101 are easier to distinguish visually and the confusion is low, there is more agreement
between the neurons in terms of their confidence.

Generalized Zero-Shot Learning (GZSL) Next, we evaluate our approach in the context
of GZSL, where our novelty detection model serves as a filter to distinguish whether the ob-
served example should be classified with the I3D model in the standard classification setup,
or mapped to one of the unknown classes via a ZSL model. We compare two prominent ZSL
methods: ConSE [23] and DeViSE [7]. The ConSE model starts by predicting probabilities
of the seen classes, and then takes the convex combination of word embeddings of the top
K most possible seen classes and select its nearest neighbor from the novel classes in the
word2vec space. For DeViSE, we train a separate model to regress word2vec representa-
tions from the visual features. We use the publicly available word2vec model that is trained
on Google News articles [18].

For consistency, we first report the results for the standard ZS case (i.e. U→U) and fur-
ther extend to the generalized case (i.e. U→U+S and U+S→U+S) as shown in Table 2. In
the more realistic GZSL setup, our model is not restricted to any group of target labels and is
evaluated on actions of seen and unseen category using the harmonic mean of accuracies for
seen and unseen classes as proposed by [44]. Table 2 shows a clear advantage of employing
novelty detection as part of a GZSL framework. While failure of the original ConSE and De-
ViSE models might be surprising at first glance, such performance drops have been discussed
in previous work on ZSL for image recognition [44] and is due to the fact that both models
are biased towards labels that were used during training. Our Informed Democracy model
yields the best recognition rates in every setting and can therefore be indeed successfully
applied for multi-label action classification in case of new activities.

5 Conclusion
We introduce a new approach for novelty detection in action recognition. Our model lever-
ages the estimated uncertainty of the category classifiers to detect samples from novel cate-
gories not encountered during training. This is achieved by selecting a council of classifiers
for each leader (i.e. the most confident classifier). The council will validate the decision
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Zero-Shot Approach HMDB-51 UCF-101
U→U U→U+S U+S→U+S U→U U→U+S U+S→U+S

Standard ConSe Model 21.03 (±2.07) 0 (±0) 0 (±0) 17.85 (±1.95) 0.07 (±0.10) 0.13 (±0.20)
Standard Devise Model 17.27 (±2.01) 0.26 (±0.37) 0.52 (±0.73) 14.48 (±1.13) 0.81 (±0.36) 1.61 (±0.71)

ConSe + Novelty Detection
One-class SVM 21.03 (±2.07) 10.99 (±1.83) 17.40 (±2.41) 17.85 (±1.95) 10.37 (±1.59) 16.55 (±1.91)
Gaussian Mixture Model 21.03 (±2.07) 13.30 (±2.58) 19.91 (±3.32) 17.85 (±1.95) 9.31 (±1.30) 15.98 (±1.99)
Conventional NN Confidence 21.03 (±2.07) 10.96 (±0.87) 18.56 (±1.22) 17.85 (±1.95) 12.19 (±1.72) 20.91 (±2.59)
Informed Democracy (ours) 21.03 (±2.07) 13.67 (±1.31) 22.27 (±1.79) 17.85 (±1.95) 13.62 (±1.94) 23.42 (±2.97)

Devise + Novelty Detection
One-class SVM 17.27 (±2.01) 8.92 (±1.89) 14.67 (±2.74) 14.48 (±1.13) 8.65 (±1.59) 14.25 (±2.00)
Gaussian Mixture Model 17.27 (±2.01) 10.61 (±2.22) 16.72 (±3.1) 14.48 (±1.13) 7.26 (±0.84) 12.88 (±1.40)
Conventional NN Confidence 17.27 (±2.01) 8.68 (±1) 15.17 (±1.56) 14.48 (±1.13) 10.08 (±1.59) 17.69 (±2.33)
Informed Democracy (ours) 17.27 (±2.01) 10.73 (±1.47) 18.18 (±2.21) 14.48 (±1.13) 11.03 (±1.42) 19.48 (±2.21)

Table 2: Accuracy for GZS action recognition with the proposed novelty detection model.
U→U: test set consists of unseen actions, the prediction labels are restricted to the unseen la-
bels (standard). U→U+S: test set consists of unseen actions, both unseen and seen labels are
possible for prediction. U+S→U+S: generalized ZSL case, both unseen and seen categories
are among the test examples and in the set of possible prediction labels (harmonic mean of
the seen and unseen accuracies reported.)

made by the leader through voting. Hence, either confirming the classification decision for
a sample of a known category or revoking the leader decision and deeming the sample to
be novel. We show in a thorough evaluation on two challenging benchmark, that our model
outperforms the state-of-the-art in novelty detection. Furthermore, we demonstrate that our
model can be easily integrated in a generalized zero-shot learning framework. Combining
our model with off-the-shelf zero-shot approaches leads to significant improvements in clas-
sification accuracy.
Acknowledgements This work has been partially funded by the German Federal Ministry
of Education and Research (BMBF) within the PAKoS project.
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