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Abstract

In this paper, we present a novel Single Shot multi-Span Detector for temporal activ-
ity detection in long, untrimmed videos using a simple end-to-end fully three-dimensional
convolutional (Conv3D) network. Our architecture, named S3D, encodes the entire video
stream and discretizes the output space of temporal activity spans into a set of default
spans over different temporal locations and scales. At prediction time, S3D predicts
scores for the presence of activity categories in each default span and produces temporal
adjustments relative to the span location to predict the precise activity duration. Unlike
many state-of-the-art systems that require a separate proposal and classification stage,
our S3D is intrinsically simple and dedicatedly designed for single-shot, end-to-end tem-
poral activity detection. When evaluating on THUMOS’14 detection benchmark, S3D
achieves state-of-the-art performance and is very efficient and can operate at 1271 FPS.

1 Introduction
Advances in deep Convolutional Neural Network (CNN) have led to significant progress
in video analysis over the past few years. While the performance of activity recognition
has improved a lot [10, 29, 32, 34, 35, 37], the detection performance still remains unsat-
isfactory [27, 36, 40]. Comparing to activity recognition, which only aims at classifying
the categories of manually trimmed video clips, activity detection is for detecting and rec-
ognizing activity instances from long, untrimmed video streams. It is substantially more
challenging, as it is expected to handle activities with variable lengths, predicting both the
activity category and the precise temporal boundaries of each instance.

A typical framework used by many state-of-the-art systems [24, 27, 28, 36] is detection
by classification, where temporal proposals are generated by sliding windows [24, 27] or
advanced proposal methods [3, 38] and separate activity classifier is applied to predict the
final detection results. However, there may be certain limitations to these frameworks: (1)
Temporal proposal and classification are independent processes and optimized separately
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Figure 1: S3D network architecture: Our network takes a video of 256 frames with spatial
size 112× 112 as input and computes base features using a standard C3D [32] network up
to conv5b. We add auxiliary Conv3D layers on top of conv5 to produce a temporal feature
hierarchy with multi-scale default spans at each layer. For each temporal feature map cell,
we predict K class confidence scores, 1 activity confidence score and 2 location offsets with a
set of Conv3D filters. Temporal NMS is applied to produce the final detection results. Refer
to Figure 2 for a detailed illustration of default spans.

with different networks, resulting in sub-optimal performance, (2) the classification network
only takes the proposal frames as input, thus forbidding it to see a larger temporal context
which can be beneficial, and (3) this two-stage approach is usually slow due to inefficient
proposal method and duplicate operations repeated in the proposal and classification stages.

We propose a Single Shot multi-Span Detector (S3D), a simple yet novel fully Conv3D-
based framework for activity detection in continuous untrimmed video streams. As illus-
trated in Figure 1, S3D produces a fixed-size collection of temporal spans and scores for the
presence of activity class instances in those spans, followed by a temporal non-maximum
suppression step to generate the final detection results. S3D is a highly-unified network by
eliminating explicit temporal proposal and classification stages and solving the detection
problem in one single shot. We set multi-scale default spans at feature maps with differ-
ent temporal resolutions to naturally handle activities of different lengths. Furthermore, we
predict the temporal offsets to adjust each default span in order to predict precise tempo-
ral boundaries. The network takes as input a whole video stream, allowing our scheme to
see a larger temporal context and produce better detection results. The whole network is
end-to-end trainable with a joint loss to directly maximize the detection performance.

The contributions of our paper are: (1) We introduce S3D, a single shot end-to-end ac-
tivity detection model based completely on Conv3D networks that can effectively predict
both the precise temporal boundaries and confidence scores of multiple activity categories in
untrimmed videos. (2) We demonstrate experimentally that our S3D achieves state-of-the-art
performance on temporal activity detection task on THUMOS’14 benchmark. (3) Besides
its strong performance, the simple S3D network is also very efficient and can run at 1271
FPS on a single GPU.

2 Related Work
Here, we review relevant works in activity recognition, object detection, and temporal ac-
tivity detection. Other works on spatial-temporal activity detection and temporal video seg-
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mentation are beyond the scope of this paper.
Activity Recognition. Activity recognition is an important research topic for video analysis
and has been extensively studied in the past few years. Earlier methods were often based
on hand-crafted visual features. Approaches include improved Dense Trajectory (iDT) [34,
35], feature encoding with Fisher Vector (FV) [23, 25], VLAD [17], etc. With the vast
successes of deep learning methods [5, 6, 7, 14, 15, 30, 42], recent works, such as two-stream
networks [10, 29, 37], 3D CNN architecture (C3D) [32] and I-3D [4], adopted deep neural
networks and significantly improved the performance. However, most methods assume well-
trimmed videos, where the activity of interests lasts for the entire clip duration. Although
they do not consider the difficult task of localizing activity instances, these methods are
widely used as the base network for the detection task.
Object Detection. Activity detection in untrimmed videos is closely related to object de-
tection [13, 20, 26] in spatial images, where detection is performed by classifying region
proposals into foreground classes or a background class. Earlier work [13] relied on an ex-
ternal region proposal method and trained a CNN classifier to classify each proposed region.
Faster-RCNN [26] incorporated a region proposal network and RoI pooling to jointly gener-
ate and classify region proposals with a single network, resulting in a large improvement of
the accuracy and efficiency. SSD [20] completely eliminated proposal generation and sub-
sequent feature re-sampling stages and encapsulated all computation in a single network to
directly output object locations and confidence scores. Our network is inspired by SSD [20]
and adopt similar design philosophies into temporal activity detection. Like SSD [20], our
S3D model is also designed for both accuracy and efficiency.
Temporal Activity Detection. Unlike activity recognition, the detection task focuses on
learning how to detect activity instances in untrimmed videos with annotated temporal bound-
aries and instance category. The problem has recently received significant research attention
due to its potential application in video data analysis.

Previous works on activity detection mainly used sliding windows as candidates and
classified them with activity classifiers trained on multiple features [11, 16, 21, 23, 31]. Re-
cently, some approaches bypassed the need for exhaustive sliding window search by propos-
ing better temporal proposal schemes [2, 3, 9, 22, 33, 41]. Along this line of attack, some
recent works incorporated deep networks into the detection framework and obtained im-
proved performance [8, 27, 28, 39, 43]: S-CNN [27] proposed a multi-stage CNN which
adopted 3D ConvNet with multi-scale sliding window to boost accuracy; CDC [28] used
temporal deconvolutional network to generate per-frame classification scores for refining
temporal boundaries; R-C3D [39] proposed an end-to-end trainable activity detector based
on Faster-RCNN [26]; Dai et al. [8] explicitly modeled temporal contextual information into
the proposal stage; SSN [43] utilized temporal pyramid pooling to model the complicated
temporal structures and achieved state-of-the-art performance. However, all these methods
require a separate temporal proposal and activity classification method.

Most recently, several attempts were made towards single shot temporal activity detec-
tion: SSAD [19] proposed to directly predict activity instances in untrimmed videos with
a separate feature extraction and detection network. SS-TAD [1] have investigated the use
of gated recurrent memory module in a single-stream detection framework. Our approach is
one of the first within this group to propose a highly-integrated detection architecture. With a
simple end-to-end Conv3D network which learns directly from raw video frames to final de-
tection outputs, S3D is able to jointly optimize feature representation and prediction layers,
resulting in a simple, fast and robust architecture achieving both state-of-the-art performance
and fast runtime speed.
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3 Approach
We introduce a Single Shot multi-Span Detector (S3D), a simple yet novel fully Conv3D-
based framework for activity detection in long untrimmed video streams. The S3D approach,
illustrated in Figure 1, is based on a feed-forward fully Conv3D network that produces a
fixed-size collection of temporal spans and scores for the presence of activity class instances
in those spans, followed by a temporal NMS step to generate the final detection results.

3.1 Model
Our model consists of four major components: base feature layers, auxiliary temporal fea-
ture layers, multi-scale default spans and convolutional predictors. The base feature layers
are used to extract high-level features given an input video stream. We then add auxiliary
temporal feature layers to generate rich spatial-temporal feature hierarchies. These layers
decrease in temporal dimension progressively and allow predictions of temporal spans at
different locations and scales. We associate multi-scale default spans with each feature map
cell and the default spans tile the feature map in a convolutional manner. At each feature
map cell, we predict the temporal offsets relative to the default span in the cell, as well as the
confidence scores that indicate the presence of an activity instance in each of those spans.
These are done by adding convolutional predictors on top of each cell.

Base Feature Layers. We use Conv3D filters to extract rich feature hierarchies from a
given input video stream. Specifically, the input to our model is a sequence of RGB video
frames which can be represented as a tensor with dimension RL×H×W×3, where L is the
number of frames, H and W are the height and width of each frame. We apply the standard
C3D architecture [32] as it has been proven as an effective building block in prior works [1,
19, 39]. We adopt the Conv3D layers (conv1a to conv5b) of C3D and generate a feature
map Cconv5 ∈ R

L
8×

H
16×

W
16×512. We use Cconv5 as our base feature since it is a rich yet compact

spatial-temporal representation of the input video stream.
Auxiliary Temporal Feature Layers. To allow the model to predict variable scale tem-

poral spans, we add temporal feature layers to the end of the base feature layers. Similar
to [32], we first down sample Cconv5 by a factor of 2 in both spatial and temporal dimension
via 3D max pooling and then add auxiliary Conv3D layers to produce a sequence of feature
maps that progressively decrease in temporal dimension while keeping the same spatial res-
olution. In more detail, we stack Conv3D layers with temporal kernel size 3 to extend the
temporal receptive field and the stride is set to 2 for progressively decreasing the temporal
dimension. We also add bottleneck Conv3D layers to help prevent over-fitting and improve
runtime efficiency. The detailed network configurations are illustrated in Figure 1 when
L = 256 and H =W = 112.

The network is intrinsically simple by only applying Conv3D filters, but builds a rich
feature hierarchy by summarizing a continuous video stream in multiple temporal resolu-
tions, allowing us to add default temporal spans at certain layers to get temporal predictions
at multiple scales.

Multi-scale Default Spans. To handle different activity locations and scales, [27] sug-
gests processing the video at different segment levels and combining the results afterward,
while [1] uses a gated recurrent network to assign a number of anchors at different time
steps. However, by utilizing feature maps from several different layers in a single network
for prediction we can mimic the same effect, while also sharing parameters across all tempo-
ral scales. We use feature maps with different temporal resolutions for detection since earlier
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(b) Feature map with temporal size 8 (conv7)
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(a) Video with GT spans

(c) Feature map with temporal size 4 (conv8)
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Conf:
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(𝒄𝟏, 𝒄𝟐, … ,	𝒄𝑲,	𝒄𝒂𝒄𝒕)

Multi-scale default spans

Temporal resolution

Figure 2: S3D framework. (a) Input video with temporal ground-truth annotations. We
evaluate a small set (e.g. 4) of multi-scale default spans at each location in several feature
maps with different temporal resolutions (e.g. conv7 in (b) and conv8 in (c)). For each default
span, we predict both the temporal offsets and the confidences for presence of activity and
all activity categories. At training time, we match the default spans to the ground truth spans.

feature maps have higher resolution and capture finer details of the input video, and deeper
feature maps have larger receptive fields and contain more temporal contexts.

In our design, we use conv5 to conv10 as our temporal feature maps and associate a set
of multi-scale default spans with each temporal feature map cell. We design the tiling of
default spans so that specific feature maps learn to be responsive to particular locations and
lengths of the activities. Regrading a temporal feature map f with temporal length L f , the
scale of the default spans for this feature map is set as S f =

1
L f

(as the input video length is
normalized to 1). We impose different scale ratios for the default spans, and denote them as
r ∈ {0.25,0.5,0.75,1.0}. We can compute the length (lr

f = S f · r) for each default span, and
we set the center of each default span to i+0.5

L f
, where i indicates the i-th temporal feature

cell, i ∈ [0,L f ). So for an temporal feature map with length L f and R different scale ratios
(R = 4), the number of default spans is L f ·R.

By combining predictions for all default spans with different scales from all locations
of multi-scale feature maps, we have a diverse set of predictions, covering various activity
locations and lengths. A concrete example is illustrated in Figure 2 where Lconv7 = 8 and
Lconv8 = 4 for feature map conv7 and conv8 respectively.

Convolutional Predictors. Each temporal feature layer can produce a fixed set of de-
tection predictions using a set of Conv3D filters. These are indicated on top of the feature
network architecture in Figure 1. For a temporal feature map C f ∈ RL f×H f×W f×d f , the basic
operation for predicting parameters of a potential temporal detection is a 3×H f ×Wf kernel
that produces scores for activity presence and categories, or temporal offsets relative to the
default location and scale. Specifically, for each default span at a given temporal location,
we compute K positive class confidence scores plus one activity confidence score and two
temporal offsets. This results in a total of (K+1+2)×R filters that are applied around each
location in the feature map, yielding (K+1+2)×R×L f outputs for a temporal feature map
C f . For an illustration of default spans, please refer to Figure 2. Each default span gets a
prediction score vector vpred = (c1,c2, ...,cK ,cact ,∆ct,∆lt) with length K +1+2, where cact

is a class-agnostic confidence score to estimate the presence of activity, c1 to cK are used to
predict default span’s category and ∆ct,∆lt are temporal offsets relative to the locations of
default spans.
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3.2 Training
The key step of training S3D is that the ground truth information needs to be assigned to
specific outputs in the fixed set of detector outputs. Once this assignment is determined, the
loss function and back propagation are applied. We also discuss training data construction
and hard negative mining strategies used in our model.

Training Data Construction and Augmentation. In theory, because S3D is a fully
Conv3D network, it can be applied to an input of arbitrary size. Therefore, our S3D network
can operate on videos of variable lengths. In practice, due to GPU memory limitations, we
slide a temporal window of size L frames on the video and feed each windowed segment indi-
vidually into the S3D network to obtain temporal detections. Although the input window size
is fixed, we decode the input video stream with a small frame rate, allowing the network to
encode enough temporal contexts for precisely detecting activity instances. Therefore, given
a set of training videos, we obtain a training collection of windows with temporal activity
annotations inside each windowed video segment. To make the model more robust to various
activity locations and scales, we further improve the training dynamics by augmenting the
training videos with temporal and spatial jittering [32].

Matching Strategy. During training, we need to determine which default spans corre-
spond to a ground truth detection and train the network accordingly. Specifically, for each
default span, we compute the Intersection-over-Union (IoU) score with all ground truth in-
stances. If the highest IoU score is higher than 0.5, we match the default span with the
corresponding ground truth span and regard it as positive, otherwise negative. So a ground
truth instance can match multiple default spans while a default span can only match one
ground truth instance at most. This simplifies the learning problem, allowing the network to
predict high scores for multiple overlapping default spans.

Hard Negative Mining. After the matching step, most of the default spans are negatives.
This introduces a significant imbalance between the positive and negative training examples.
Instead of using all the negative examples, we sort them using the highest activity confidence
loss for each default span and pick the top ones so that the ratio between the negatives and
positives is nearly 1 : 1. We found that this leads to faster optimization and a more stable
training.

Training Objective. The training objective of S3D is to solve a multi-task optimization
problem. Let xk

i j = {1,0} be an indicator for matching the i-th default span to the j-th ground
truth span of category k ∈ [1,K], and si be the highest IoU score with any ground truth spans.
The overall objective loss function is a weighted sum of the localization loss (loc), class
confidence loss (conf) and activity confidence loss (act):

Loss = Lloc(x, t,g)+αLcon f (x,c)+βLact(s,c) (1)

where α and β are the weight terms used for balancing each part of the loss function.
The localization loss is a Smooth L1 loss [12] between the predicted temporal offsets (t)

and the ground truth span parameters (g). In temporal domain, we regress to offsets for the
center (ct) of the default span (d) and for its length (lt):

Lloc(x, t,g) =
1

Npos

Npos

∑
i

∑
m∈{ct,lt}

xk
i jsmoothL1(tm

i − ĝm
j ) (2)

where Npos is the number of positive matching default spans in a batch, and the temporal off-
set parameters ĝm

j are defined similarly like the bounding box offset in object detection [12]:
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ĝct
j = ∆cti = (gct

j −dct
i )/dlt

i ĝlt
j = ∆lti = log(

glt
j

dlt
i
) (3)

where gct
j , dct

i are the centers and glt
j , dlt

i are the lengths for the ground truth span and the
matching default temporal span respectively.

The class confidence loss is a softmax loss over multiple class confidences (c):

Lcon f (x,c) =−
1

Npos

Npos

∑
i

xk
i j log(ĉk

i ) (4)

where ĉk
i =

exp(ck
i )

∑k exp(ck
i )

is the softmax probability for the ground truth class of this instance.

The class confidence loss is only used to distinguish between multiple positive classes not
including the background. We use another activity confidence score to predict activity class
agnostic scores.

The activity confidence loss is a binary classification loss using sigmoid cross-entropy.
Rather than using a hard ground truth score for positive (1) and negative (0), we use the
IoU score si as ground truth for each default span. This helps the training procedure since
positive default spans are assigned different confidence levels based on its overlap with the
ground truth span. We define the activity confidence loss as:

Lact(s,c) =−
1
N

N

∑
i
(si log(cact

i )+(1− si) log(1− cact
i )) (5)

where N is the number of total training default spans in a batch and N = Npos +Nneg; cact
i is

the predicted activity confidence score. Note that we separate the activity confidence score
and class confidence scores via two separate losses. Comparing to only having one soft-
max classification loss containing all positive classes and one background class, we find this
configuration is more robust, leads to better validation performance and makes the network
architecture more flexible.

3.3 Prediction
Activity prediction in S3D is single shot with one forward pass of the network. Given an
input video stream, we generate all default spans with class confidence scores, activity con-
fidence score and temporal location offsets. The temporal location offset is in the form of
relative displacement of the center point and length of each instance as described in Equa-
tion 3, which is applied on the default span to predict accurate start time and end time. Then
the default spans with low activity confidence score will be filtered out and the remaining
spans are refined via NMS with threshold value 0.5. Each remaining span is considered as
a positive prediction and assigned the activity label with the highest class confidence score,
which we consider as the final temporal detection results of S3D.

4 Experiments
We evaluate the proposed framework on the THUMOS’14 [18] large-scale activity detection
benchmark dataset. As shown in the experiments, our S3D not only achieves state-of-the-art
performance but also acquires fast runtime speed at 1271 FPS.

Citation
Citation
{Jiang, Liu, Zamir, Toderici, Laptev, Shah, and Sukthankar} 2014



8 ZHANG ET AL.: S3D: SINGLE SHOT MULTI-SPAN DETECTOR

IoU threshold 0.3 0.4 0.5 0.6 0.7
S-CNN [27] 36.3 28.7 19.0 10.3 5.3
CDC [28] 40.1 29.4 23.3 13.1 7.9

SSAD [19] 43.0 35.0 24.6 - -
TCN [8] - 33.3 25.6 15.9 9.0

R-C3D [39] 44.8 35.6 28.9 - -
SSN [43] 50.6 40.8 29.1 - -

SS-TAD [1] 40.1 - 29.2 - 9.6

S3D 47.9 41.2 32.6 23.3 14.3

Table 1: Temporal activity detection mAP on THUMOS’14. The top performing methods
in existing papers are shown. S3D achieves state-of-the-art performance at different overlap
threshold. (- indicates that results are unavailable in the corresponding papers).

4.1 Experimental Setup

Dataset [18]. The temporal activity detection task of THUMOS’14 dataset is challenging
and widely used. Over 20 hours of video and 20 activity categories are involved and anno-
tated temporally, resulting in 200 validation and 213 test untrimmed videos. Following the
standard practice, we train our models on the validation set and evaluate them on the test-
ing set. We follow the conventional metrics used in THUMOS’14, computing the Average
Precision (AP) for each activity category and calculating mean AP (mAP) for evaluation.
Implementation Details. S3D takes as input L = 256 raw video frames with size H =W =
112. We decode each video at 8 FPS and produce a collection of training windows. Thus,
each window contains 32 seconds of a video stream and this is motivated by the fact that more
than 99% of activity instances in THUMOS’14 are less than 32 seconds. We use conv5 to
conv10 as the temporal feature layers with temporal dimension {32,16,8,4,2,1} and asso-
ciate a set of default spans at each temporal feature cell with four ratios {0.25,0.5,0.75,1.0},
resulting in 252 default spans in total; the default spans correspond to spans of duration be-
tween 0.25s and 32s uniformly distributed at different temporal locations. We initialize base
feature layers with C3D weights pre-trained on Sports-1M by the authors in [32], and other
layers from scratch. We allow all the layers of S3D to be trained on THUMOS’14 with the
end-to-end loss function. Our code is available at https://github.com/dazhang-cv/S3D.

4.2 Comparison with State-of-the-art

The comparison results between our S3D and other top-performing methods are summarized
in Table 1, and our S3D outperforms all previous state-of-the-art methods. Furthermore,
S3D improves the state-of-the-art by a large margin when the evaluation IoU thresholds are
set at higher levels (0.5 to 0.7), indicating its superior ability to predict precise temporal
boundaries of different activities.

In comparison with the proposed S3D model: previous systems on top of C3D networks
(S-CNN [27], CDC [28]) largely relies on good temporal proposals generated by external
proposal methods, restricting them from directly optimizing the detection performance. R-
C3D [39] is able to process a long video stream and predict multi-scale activity instances,
but it only applies anchors on a single feature map with fixed temporal dimension. With the
proposed S3D framework, we jointly optimize the feature representation and detection layers
at different temporal levels by processing an untrimmed input video stream with enough
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temporal context.

4.3 Ablation Study
To understand S3D better, we evaluate our network with different variants on THUMOS’14
to study their effects. For all experiments, we only change the certain part of the network
and use the same evaluation settings. We compare the result of different variants using the
mAP at IoU threshold 0.5.

include 1.0 span X X X X
include 0.25 span X X X
include 0.5 span X X
include 0.75 span X

# Spans 63 126 189 252
mAP@0.5 27.5 29.5 31.1 32.6

Table 2: Effects of various design choices on S3D performance, the span with ratio 1.0 is
included by default.

Default Span Ratio. By default, we use 4 default spans per each temporal location. If
we remove the spans with ratio 0.75, the mAP drops by 1.5%. By further removing the
spans with ratio 0.25 and 0.5, the mAP drops another 3.6%. By only keeping the span with
ratio 1.0, our model already has a strong performance (mAP 27.5%) since it already covers
most ground truth instances in the dataset. Using a variety of default ratios make the task of
predicting spans easier for the network and result in better performance.
Span Regression. The default spans are defined at fixed temporal locations. In order to
generate precise predictions for starting and ending time of each activity instance, we adjust
each default span by applying a temporal offset described in Equation 3. This technique,
which we call span regression, allows our model to predict temporal spans at much smaller
granularities. As shown in Table 3, span regression improves the mAP from 28.6% to 32.6%.

Span regression conv5 conv6 conv7 conv8 conv9 conv10 mAP@0.5 # Spans
X X X X X X X 32.6 252

X X X X X X 28.6 252
X X X X X X 31.8 248
X X X X X 30.7 240
X X X X 27.6 224

Table 3: Effects of using multiple temporal feature layers and span regression.

Multi-scale Default Spans. A major advantage of S3D is using default spans of different
scales on different temporal feature layers. To measure the advantage gained, we progres-
sively remove layers and compare results. Table 3 shows a decrease in accuracy with fewer
layers, dropping monotonically from 32.6% to 27.6%. This is because that different layers
are responsible for predicting temporal activities at different lengths, which reinforces the
message that it is critical to spread spans of different scales over different layers.
Qualitative Results. We provide qualitative results to demonstrate the effectiveness and
robustness of our proposed S3D network. As shown in Figure 3, different video streams
contain very diversified background context and different activity instances vary a lot in
temporal location and scale. S3D is able to predict the accurate temporal span as well as the
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GT

Pred
Pole Vault [227.3 – 238.0s]

Pole Vault [228.1 – 236.6s]

Pole Vault [241.8 – 249.1s]

Pole Vault [242.0 – 247.7s]

GT

Pred
Javelin Throw [616.1 – 624.2s]

Javelin Throw [619.4 – 624.6s]

Javelin Throw [635.0 – 637.0s]

Javelin Throw [634.6 – 637.6s]

GT

Pred
Shotput [32.6 – 42.0s]

Shotput [35.9 – 41.6s]

Shotput [46.5 – 62.5s]

Shotput [49.7 – 58.6s]

GT

Pred
Clean and Jerk [110.7 – 126.2s]

Clean and Jerk [111.6 – 125.2s]

Figure 3: Qualitative visualization of the top detected activities by S3D (best viewed in
color) on four different activity categories in THUMOS’14 dataset: Pole Vault, Clean and
Jerk, Javelin Throw and Shotput. Ground truth activity segments are marked in black and
predicted activity segments are marked in green.

correct activity category. Furthermore, S3D can distinguish activity with minor differences
such as the normal weightlifting compared to Clean and Jerk. It is also capable of detecting
the same activity sequence with different playing speed as shown in the Shotput example.

Activity Detection Speed. Since our model has a single-shot, end-to-end design with simple
Conv3D building blocks, it is also very efficient. We benchmark our model on a GeForce
GTX 1080 Ti GPU, and our S3D can run much faster than real time at 1271 FPS. For com-
parison, previous top performing methods [19, 27, 28] have significantly lower FPS for the
whole detection pipeline. Comparing to some recent works [1, 39] providing good runtime
efficiency, our S3D achieves much better accuracy.

5 Conclusion

In this paper, we introduce S3D, a Single Shot multi-Span Detector for temporal activity
detection. We design a simple network architecture by using only a fully Conv3D network
on top of the raw video frames to jointly predict the temporal boundaries as well as activity
categories. A key feature of S3D is the use of multi-scale temporal span outputs attached
to multiple temporal feature maps. With this framework, we achieved state-of-the-art per-
formance on THUMOS’14 benchmark dataset, while being efficient to run much faster than
real time on a single GPU.
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