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Abstract

In this paper, we study challenging anomaly detections in streaming videos under
fully unsupervised settings. Unsupervised unmasking methods [12] have recently been
applied to anomaly detection; however, the theoretical understanding of it is still limited.
Aiming to understand and improve this method, we propose a novel perspective to es-
tablish the connection between the heuristic unmasking procedure and multiple classifier
two sample tests (MC2ST) in statistical machine leaning. Based on our analysis of the
testing power of MC2ST, we present a history sampling method to increase the testing
power as well as to improve the performance on video anomaly detection. We also offer
a new frame-level motion feature that has better representation and generalization ability,
and obtain improvement on several video benchmark datasets. The code could be found
at https://github.com/MYusha/Video-Anomaly-Detection.

1 Introduction
Anomaly detection in video streams is a challenging task, because the definition of anomaly
is never perfectly clear and is highly influenced by the context. Therefore, many supervised
learning based approaches [3, 6, 14, 19, 21, 25] require large amount of labeled information.
Recently, unsupervised learning based methods [7, 12] have also been studied. Without
assuming any labeled information is available in advanced, unsupervised learning is more
challenging than its supervised learning counterpoint.

There are two major approaches for unsupervised learning anomaly detection, including
offline [7] and online [12] algorithms. Del Giorno et al. [7] is related to permutation tests
with theoretical statistical guarantees [31]; however, it is usually more time consuming and
is not suitable for real-time detection. Ionescu et al. [12] proposed an unmasking method
on sliding windows to compare two sets of video frames with the goal of detecting changes.
This approach has promising empirical performance, but the underlying theory is not well
understood yet.

A key step of Ionescu et al. [12] is to determine whether two given consecutive windows
of frames are “similar” or not. If we assume the first window follows distribution P and the
second window follows another distribution Q, then the task is reduced to the two-sample
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test problem [4, 11, 15, 20, 24, 30, 32]. A two sample hypothesis test aims to compare
two distributions via their samples. In this paper, our goal is to understand the connec-
tion between two-sample tests and the “unmasking method” for streaming video anomaly
detections, provide theoretical justification, and improve empirical performance. Our contri-
butions are four-fold:

• We study the connection between the intuitive unmasking method [12] and the multiple
classifier two-sample test (MC2ST) in statistical machine learning, and show that [12]
is a special case of M2CST.

• We study the theory of MC2ST by deriving its asymptotic testing power.

• Based on the derived testing power, we propose a “history sampling” scheme to boost
the performance. We demonstrate the improved accuracy of our method on several
benchmark datasets.

• Motivated by our theoretical results on the testing power of M2CST, we propose a
better motion feature as a frame-level descriptor for videos.

2 Related Works
Video anomaly detections are usually studied under the supervised settings [2, 3, 5, 6, 14,
19, 21, 25]. The most common approach is to model normal activity patterns and detect out-
liers under pre-defined metrics and flag them as anomaly. There are various approaches for
building these models from training data, such as the Social Force Model [25], Gaussian pro-
cess [3] and probabilistic Latent Semantic Analysis [19]. Building a dictionary from normal
events and then detecting anomalies based on the reconstruction cost from the dictionary
is also popular [5, 6, 21]. Deep learning approaches with different network architectures
are emerging recently, including sparse auto-encoder [27], stacked Recurrent Neural Net-
work [22] and spatio-temporal adversarial networks [17].

Many works rely on the estimation of the normal distribution of events. Assuming that
the abnormal events occur less often, Dutta and Banerjee [8], Zhao et al. [35] build the
normal model and gradually update it with an unsupervised method. Ren et al. [26] instead
use a dictionary of atoms to represent different types of normal behaviors. Kim and Grauman
[14] propose to learn a generative model for local activities and use a Markov Random Field
graph to estimate normality. Xu et al. [33] employ deep learning features and use several
SVMs to detect anomalies based on the learned patterns.

We instead study a completely unsupervised method that requires no training data and
normal patterns of any form. Del Giorno et al. [7] aim to detect abnormal events that are
independent of temporal order by permuting the frames first and then detect distinguishable
parts as anomaly. The work most related to us isIonescu et al. [12], where they propose to
process video in an on-line fashion and detect sudden abnormal behaviors using the unmask-
ing method discussed in Section 4.1.

3 Video Anomaly Detections and Two-Sample Test
Different from existing supervised learning works [21, 23, 25, 33], we consider an unsu-
pervised learning setting in video anomaly detection problems, where there is no training
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Figure 1: An illustration of the sliding window and average scores.

data with labeling [7, 12]. There are two main frameworks for unsupervised learning de-
tection, including offline [7] and streaming (online) [12]. The offline algorithm [7] requires
several permutations of frames to break the time ordering, which is not suitable for real-time
applications. In this paper, we consider the online unsupervised learning framework.

Considering that abnormal events often have direct and obvious differences from preced-
ing events, we can use sliding window to detect anomaly in videos. For a sliding window,
assuming the first part of the sliding window is normal, we decide that the latter part con-
tains abnormal behaviors if there is a significant difference between them. This framework is
also adopted by Ionescu et al. [12], who obtain promising results as an unsupervised learning
method. Suppose that we are currently at the window from frame t to t+2n, where n denotes
the size of each half. The first part of frames t ⇠ t + n is labeled as class 0, and the second
part of frames t +n+1 ⇠ t +2n as class 1.

We train classifiers on this window and obtain the training accuracy. We then propogate
the accuracy to each frame in the second half as the anomaly score, whisch can easily be
interpreted as the indicator of how different the two sets are [7, 12]. The sliding window
then moves with a stride, which may cause the covering range of consecutive windows to
overlap, and we repeat the aforementioned classification procedure again. The final anomaly
score of each frame is assigned as the average of all scores it has received as the second half
of different sliding windows. An illustration of the sliding window scheme can be found in
Figure 1.

3.1 Classifier Two-Sample Test (C2ST)
Without loss of generality, we assume the normal events is followed by a distribution P, while
the anomaly is followed by Q. We then reformulate the streaming video anomaly detection
decribed above as a two-sample test task. We denote frames from two windows t ⇠ t +n as
{xi}n

i=1 and frames t + n+ 1 ⇠ t + 2n as {yi}n
i=1, where {xi}n

i=1 ⇠ P and {yi}n
i=1 ⇠ Q. The

null hypothesis is that the two sets of frames are from the same distribution (e.g. P = Q),
while the alternative hypothesis is P 6=Q.

Several two-sample test algorithms have been proposed in statistics and machine learn-
ing [4, 11, 15, 20, 24, 30, 32]. Recently, classifier two-sample test is demonstrated to enjoy
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the advantage in testing high dimensional distributions [10, 20]. Similar ideas have also
been applied to video anomaly detection [7, 12]. However, the connection between video
anomaly detection and (classifier) two-sample test has not been explicitly established. In
this section, we revisit the classifier two-sample test (C2ST) with theoretical justification for
Ionescu et al. [12], and a direction to improve these existing works (Section 3.3).

Classifier two-sample test (C2ST) conducts the hypothesis test via training a binary clas-
sifier to distinguish two sets of samples, and uses the classification accuracy as the proxy to
make the decision. If the accuracy is high, then we are confident to reject H0 : P=Q. When
we bound the Type-I error1 with significance level a , we want to maximize the power of the
test, which is defined as 1�b , where b is the Type-II error2. Intuitively speaking, given a
tolerance level of being false positive (treat the frame as anomaly when it is not), we want to
detect the true anomalies as many as possible. Improving testing power for other tests have
been studied [11, 18, 34], however; improving the power of classifier two sample test is not
well understood. Next, we show how to improve testing power of C2ST with the connection
with Ionescu et al. [12].

3.2 Increasing Testing Power via Multiple Classifiers

If {xi}n
i=1 ⇠ P and {yi}n

i=1 ⇠ Q, the goal is to test the null hypothesis H0 : P = Q. We
construct the dataset {(zi,`i)}2n

i=1 =: {(xi,0)}n
i=1[{(yi,1)}n

i=1, then randomly split the equal-
sized dataset Dtr and Dte, where we train classifier f on Dtr and test on Dte. Then the
accuracy based on f is t̂ f =

1
n Â(zi,li)2Dte I [ f (zi) = `i]. Denote the random variable Vf =

I [ f (z) = `], under null hypothesis H0 :P=Q, its expectation is clearly 0.5. Under alternative
hypothesis, the expectation is 0.5+ e f , where e f represents the discriminative ability of f .
Assume we have m classifiers f1, . . . , fm, the test statistics is then defined as t̂ = 1

m Â j t̂ f j .

Theorem 1. Define e1 = 1
m Â j e f j , e2 = 1

m Â j e2
f j

, c0 = 1
m Â j 6=k covH0(Vf j ,Vfk), and c1 =

1
m Â j 6=k covH1(Vf j ,Vfk), where covH0(Vf j ,Vfk) is the covariance between Vf j and Vfk under
H0, and vice versa. Based on the above descriptions, the testing power of the test statistics t̂
is asymptotically F

⇣
e1
p

nm�F�1(1�a)
p

0.25+c0p
0.25�e2+c1

⌘
with significance level a .

Proof. Please refer to Appendix A.

Figure 2: The testing power between different
algorithms on Gaussian v.s. Student-t distri-
butions.

If m = 1, the power is reduced to
F
⇣

e1
p

n�F�1(1�a)/2p
0.25�e2

⌘
, If m > 1, and every

v f j resulted by the classifier f j is indepen-
dent to each other, then c0 = c1 = 0. The
resulted power is F

⇣
e1
p

mn�F�1(1�a)/2p
0.25�e2

⌘
,

which is better than m = 1 case. However,
it is hard to have independent or uncorre-
lated f j in practice. We reduce the covari-
ance by training multiple classifiers with
different data split or difference feature par-
titions [31].

1The probability of rejecting null hypothesis H0 : P=Q when P=Q.
2The probability of accepting null hypothesis H0 : P=Q when P 6=Q
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We demonstrate simple toy data results for empirical justification, where P is a 50 dimen-
sional standard normal distribution while Q is the same except for replacing one dimension
with a student-t distribution whose degree of freedom is 3. We consider two famous baseline
algorithms, maximum mean discrepancy (MMD) [11] and mean embedding (ME) [4, 13].
For C2ST, we train a 2-layer MLP with hidden layer size to be 20. The detailed experiment
setting is shown in Appendix B.1. We consider m = 1 and m = 5 cases. We varies n and re-
port the testing power under a = 0.05 significance level. The results are shown in Figure 2.
Even though the number of dimensions is only 50, it is already challenging to MMD and
ME, which demonstrates that C2ST enjoys the advantage under high dimensional settings.
On the other hand, it is clear that increasing number of classifiers significantly boost the
testing power even if the classifiers are correlated to each other.

Unmasking as Multiple Two Sample Test. Ionescu et al. [12] employ an unmasking
method on the two sets of frames, where they train multiple classifiers by gradually remov-
ing the most heavily weighted features from the sample frames, and average the accuracies
as an indication of anomaly level. This procedure is essentially a multi-classifier two sample
test by training the classifiers with different partition of features, and therefore enjoys the ad-
vantages of MC2ST from above. More empirical comparison between strategies of learning
multiple classifiers is studied in Section 4.1.

3.3 Increasing Testing Power via Utilizing History

Based on Theorem 1 above, increasing the sample size n improves the testing power. Given
a fixed window size, we utilize the history to increase sample size. For each sliding window,
we sample a certain number of frames from past time and combine them with the first part
of the window as the normal class. Therefore we are comparing the current t ⇠ t +n frames
and b past frames with the second part t +n+1 ⇠ t +2n. To keep the sampling in an online
fashion, we maintain a pool of history as the sliding window moves forward, and each time
we randomly sample b frames from the pool without replacement. When a frame becomes
history, we add it into the history pool with a predefined probability, and replace the previous
first frame in the pool.

Screening In practice, the video has considerable variance across the duration of a video.
Therefore, when the two consecutive parts are both normal, the history sampling might in-
troduce unnecessary bias to the current windows, which causes the classification accuracy
to rise up even though it should be near chance-level. Therefore, we apply a screening pro-
cedure for the history sampling method: for each window, if the anomaly score is relatively
low for the first part then we skip sampling from the history.

3.4 Improving Testing Power via Features

In Theorem 1, e f j 2 [0,0.5] for classifiers can be interpreted as their discriminative ability.
Clearly, the larger e f j results in stronger testing power. In practice, since we only have
limited amount of frames for two windows, we can only adopt simple classifiers (e.g. logistic
regression) on the extracted features. Therefore, the testing power is implicitly dominated
by the quality of the these features.
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A commonly used approach for extracting features is to use convolutional neural net-
work pre-trained on large dataset [16, 28, 29] as they require no additional training data.
On the other had, many works in video anomaly detection use motion features[7, 12, 21].
Del Giorno et al. [7], Ionescu et al. [12] perform classification on the extracted motion cubes
from videos. However, we consider that motion features should embed both the position and
amplitude of ongoing motion inside video frames. Also it should allow a reasonable way to
perform history sampling introduced in Section 3.3.

We adjust to a more expressive frame level motion descriptor for both better represen-
tation and generalization ability that allows us to apply history sampling. Given an input
video, we apply the same procedure as Lu et al. [21] to extract 3D gradient features of the
consecutive frames. We use the obtained gradient volume of consecutive frames as features,
instead of extracting motion cubes. The pixel-level gradient volumes can preserve the spatial
information of motion between frames. We also follow Lu et al. [21] to eliminate noise by
only preserving the values for regions with motion responses larger than a given threshold.
Therefore, we will have a frame-level motion feature with noise filtration.

4 Experiments

We conduct empirical study on four benchmark datasets for detecting abnormal activities,
including UCSD pedestrian [23], UMN crowd activity [25], Avenue [21], and the Subway
surveillance video [1] datasets. We only use testing videos in each dataset as we do not
require normal training data.

Figure 3: An illustration of
frame-level motion feature.

We follow Ionescu et al. [12] to use two features to
represent the video frames: the appearance feature (pre-
trained CNN feature) [28] and motion features [21]. Our
improved motion feature is of size 120 ⇥ 160 for each
frame. We also follow Ionescu et al. [12] to equally par-
tition each frame into 2⇥2 bins to process for better per-
formance. An simple illustration of the idea is shown in
Figure 3. Further implementation details can be found is
the Appendix B.2.

Evaluation In practical anomaly detection tasks, we care more about controlling type II
errors, i.e. the false negative rate. Therefore, as many works in video anomaly detection[7,
12, 21], we use the area under curve (AUC) to measure performance. Further details are in
Appendix C. Note that there are a few videos in datasets, such as Avenue dataset, that only
have abnormal frames. This contradicts the assumption of unsupervised learning setting,
which assumes the video only contains a few anomalies. So we exclude those special cases
for comparison. Since there is no code available of [12], we report our reproduced results of
methods in Ionescu et al. [12], which is similar to the reported number in the paper, for fair
comparison. For other existing works, we simply use their results as reference.

4.1 Study of Different Ensemble Strategies

In Section 3.2, we analyze the testing power of multiple classifier two-sample test. In
this section, we study different strategies for generating multiple classifiers, and show that
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AUC(%)
/Features

Simple Sampling UnmaskingWith Replacement Without Replacement
Appearance 76.6 76.6 79.1
Motion 81.3 78.4 84.4

Table 1: Results of different ensemble strategies on Avenue

they can reach comparable results. The detail for training classifiers can be found in Ap-
pendix B.2.

The first approach is to equally partition d dimensions to k parts of dimension d/k, and
train k classifiers on the sub-features separately. We then average the training accuracy as
the anomaly score for each frame. Given that classifiers are trained on different subparts,
this procedure can be done in parallel and therefore have the potential to significantly raise
the processing speed. An alternative way is to randomly sample a subset of features with
replacement for each classifier.

Ionescu et al. [12] instead use unmasking to train multiple classifiers given set of frames.
Let us suppose the frame features are d dimensional. The unmasking method trains k clas-
sifiers and gradually remove m dimensions from the current features at each time based on
the classifier weights. The intuition is that if there is a significant difference between the
two tested parts, the accuracy will remain high even after removing certain dimensions of
features. We performed experiments of these variants on the Avenue dataset and present our
results of AUC scores in Table 1. The performance of these different ensemble strategies and
the unmasking method shows a trade off between the classifiers’ correlation and their dis-
criminative abilities that we discussed in Theorem 1. Compared to the unmasking procedure,
the simple ensemble strategies that we observed in this section will reduce the correlation
between classifiers to benefit the testing power, since they are trained on vastly different
parts of the original features. Also they offer great speed up and computing convenience
because of parallel computing. However, the unmasking method has the advantage of high
discriminative ability of classifiers despite the overlapping of training data, as they start by
training on the whole feature, giving the classifiers more sufficient data. From practical view
we can conclude that the unmasking method is a good heuristic, as it has better leveraged
result in said trade-off based on the empirical results. Therefore, we stay with this option for
our following experiments. The classifier number k and removed feature dimension m is set
to 10 and 50.

4.2 Results on Benchmark Datasets

Methods Ped1(%) Ped2(%)
Kim and Grauman [14] 59.0 69.3

Mehran et al. [25] 67.5 55.6
Mahadevan et al. [23] 81.8 82.9

Xu et al. [33] 92.1 90.8

Table 2: Frame AUC of supervised
methods on UCSD

UCSD dataset UCSD dataset contains 2 pedes-
trian surveillance video sets, Ped1 and Ped2. This
dataset is well-labeled with challenging abnormal
activities such as riding bikes in crowded roads.
UCSD Ped1 has 36 testing videos, which we use
7000 testing frames. UCSD Ped2 has 12 testing
videos, which we use 1380 testing frames. Result
of our methods are presented in Table 3 and refer-
ences including supervised methods are in Table 2.

We can observe that on appearance feature, the proposed history sampling can indeed
improve upon the reproduced unmasking method. Our improved motion feature is also able

{Ionescu, Smeureanu, Alexe, and Popescu} 2017

{Kim and Grauman} 2009

{Mehran, Oyama, and Shah} 2009

{Mahadevan, Li, Bhalodia, and Vasconcelos} 2010

{Xu, Ricci, Yan, Song, and Sebe} 2015



8 LIU, LI, PÓCZOS: CLASSIFIER TWO-SAMPLE TEST FOR VIDEO

AUC(%)
/Features

Ped1 Ped2
Unmasking Random Sampling Screening Unmasking Random Sampling Screening

Appearance 67.9 68.6 69.0 80.9 85.0 87.5
Improved Motion 71.7 71.2 71.8 84.1 85.8 85.4

Table 3: Frame AUC on UCSD

to improve performance by giving a better representation. For instance in Ped1 the repro-
duced result of original motion feature is 67.2%, which is comparable with 67.8% reported
in [12], and our improved motion feature is able to bring a 4% improvement. Therefore we
stay with this frame-level motion feature that also allows straightforward history sampling.
On Ped1 the screened history sampling result on motion feature is at least competitive to the
unmasking results if not remarkably better, and on Ped2 they are able to bring larger relative
improvements. A demonstration of detection result on several datasets is shown in Figure 4.
The localization is visualized via the amplitude of our motion feature.

(a) normal activity on Avenue (b) normal activity on USCD (c) normal activity on UMN

(d) detected anomaly on Avenue (e) detected anomaly on USCD (f) detected anomaly on UMN

Figure 4: Detection results demonstration (best viewed in color)

UMN dataset UMN dataset consists of three main scenes with staged crowd abnormal
activities. There are 7739 frames with frame level ground truth. The average result of all
three scenes is reported in Table 4. The labeling information can be found in Appendix C.

(a) Existing methods

Methods AUC(%)
Cong et al. [5] 97.8

Del Giorno et al. [7] 91.0

(b) Our results

AUC(%) / Features Unmasking Random Sampling Screening
Appearance 94.1 94.5 95.2
Improved Motion 95.3 94.7 96.1

Table 4: Frame AUC on UMN

Although Ionescu et al. [12] already has satisfactory performance on UMN dataset, our
methods still demonstrates a stable good performance. A explanation for random sampling
not being able to bring further improvement here with the improved motion feature is the
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possibly biased history. Since there is no constraints to decide whether the sampled history
are normal or not, we always have a non-zero chance to sample noisy or anomalous frames.
That would introduce undesired bias into our hypothesis test and therefore affect the per-
formance. However, the proposed screening procedure mitigates this problem and bring the
performance gain.

Avenue dataset The well-labeled Avenue dataset contains 21 testing videos in which we
use 14994 frames, the ground truth is given in pixel level. This dataset is very challenging
because it contains various abnormal activities such as throwing objects and running. We
report the frame level AUC results of our methods compared them to supervised [21] and
unsupervised methods [7, 12] as shown in Table 5.

(a) Existing methods

Methods AUC(%)
Lu et al. [21] 80.9

Del Giorno et al. [7] 78.3

(b) Our results

AUC(%) / Features Unmasking Random Sampling Screening
Appearance 79.1 79.3 81.1

Improved Motion 84.4 83.9 83.9

Table 5: Frame AUC on Avenue

The best performance of our methods is brought by improved motion feature. Even con-
sidering the two special case videos in Avenue, our improved motion feature alone obtain
a score of 82.3%, successfully surpassing the results of other unsupervised and even super-
vised methods. However, on the motion features, the sampling is not able to further benefit
the performance due to the amount of variance in the features. Notice that one of the chal-
lenging aspect of Avenue dataset is the camera being closer to the observed crowd, where we
will capture more unimportant motions than UCSD and UMN datasets. Also, the activities
in the videos have various forms, therefore the motion feature can vary much across time.
As we stated before in Section 3.3, the downside of sampling history is the possibility to
bring unwanted bias into the two sample test. We calculate the mean variance of motion fea-
tures on every dimensions in the four bins, and average the results. The avenue dataset has
average bin variance of 0.86, while the UCSD Ped2 dataset has average variance of merely
0.19. Under high variance case with small window sizes, limited numbers of history can not
benefit the result.

On the other hand, the appearance feature extracted from pretrained CNN is more robust
to unimportant motions. Using appearance features, the history sampling with screening has
the best result with 2% increment than the original method, showing the effectiveness of
adding history frames.

Subway dataset The subway dataset includes two longest surveillance videos of subway
exit and entrance gates. The entrance gate video has 144249 frames and the exit gate video
has 64901 frames. The labeling information is also in Appendix C. Considering that in this
dataset the major abnormal activity with provided ground truth is going in wrong direction
and the camera is set facing almost directly to the gate, the appearance feature is not very
applicable here, as they are not sensitive to the direction of moving people if they are facing
the camera. The results obtained by improved motion feature are presented in Table 6. We
report our reproduced result of Ionescu et al. [12] in existing methods considering the pos-
sible difference in labeling. We calculate our AUC scores on the whole videos as we do not
require any assumption of the occurrence of the abnormal events or training data.

{Lu, Shi, and Jia} 2013

{Delprotect unhbox voidb@x penalty @M  {}Giorno, Bagnell, and Hebert} 2016

{Ionescu, Smeureanu, Alexe, and Popescu} 2017

{Lu, Shi, and Jia} 2013

{Delprotect unhbox voidb@x penalty @M  {}Giorno, Bagnell, and Hebert} 2016

{Ionescu, Smeureanu, Alexe, and Popescu} 2017
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(a) Existing methods

Methods Entrance gate(%) Exit gate(%)
Cong et al. [5] 80.0 83.0

Del Giorno et al. [7] 69.1 82.4
Ionescu et al. [12] Motion 69.9 90.0

(b) Our results

AUC(%) / Dataset Unmasking Random Sampling Screening
Entrance gate 71.7 71.6 71.6
Exit gate 92.7 92.8 93.1

Table 6: Frame AUC on Subway

Our proposed methods of screened history sampling is able to achieve a relative im-
provement of 3.1% on the exit gate. Similar to the observation from Ionescu et al. [12], our
proposed methods has relatively lower scores than supervised method on Entrance gate. This
is due to the limitation of general unsupervised methods that cannot rely on labeled training
data and will therefore detect some reasonable false positives. Visualized results of such
situation can be found in Appendix D. That being said, improvements can still be obtained
by our improved motion feature and history sampling.

5 Conclusion
Video anomaly detection has always been a difficult yet interesting task, especially under
unsupervised settings. Following Ionescu et al. [12] who use unmasking method to de-
tect sudden changes between consecutive frames inside a sliding window, we offer a new
perspective to derive theoretical foundation of this method by connecting it to a statistical
analysis method, i.e. the multiple classifier two sample test (MC2ST). Our theoretical anal-
ysis is justified by various practical experiments, and gives us directions on how to improve
the current method. Based on that, we propose a new frame-level motion feature and the
procedure of history sampling, while keeping the online processing style. Our methods have
achieved improvement on several surveillance video datasets with theoretical justification.
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