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Abstract

In this work we propose a novel approach to semantic localisation. Our work is
motivated by the need for environment perception techniques which not only perform
self-localisation within a map but also simultaneously recognise surrounding objects.
Such capabilities are crucial for computer vision applications which interact with the
environment: autonomous driving, augmented reality or robotics.

In order to achieve this goal we propose a solution which consists of three key steps.
Firstly, a database of panoramic RGB images and corresponding globally unique, per-
pixel object instance labels is built for the desired environment where we typically con-
sider objects from static categories such as "building" or "tree". Secondly, a semantic
segmentation network capable of predicting more than 3000 labels is trained on the col-
lected data. Finally, for a given panoramic query image, the corresponding instance label
image predicted by the network is used for semantic matching within the database. The
matching is performed in two stages: (i) a fast retrieval of a small subset of database
images (~100) with highly overlapping instance label histograms, followed by (ii) an ex-
plicit approximate 3 DoF (yaw, pitch, roll) alignment of the selected subset of images and
the query image. We evaluate our approach in challenging indoor and outdoor navigation
scenarios, achieving better or similar performance when compared to state-of-the-art im-
age retrieval-based localisation approaches using key-point matching [29, 63] and image
level embedding [3].

Our contribution includes: (i) a description of a novel semantic localisation approach
using globally unique instance segmentation, (ii) corresponding quantitative and quali-
tative analysis and (iii) a novel CamVid-360 dataset containing 986 labelled instances of
buildings, trees, road signs and poles.

1 Introduction
As applications of Computer Vision algorithms transition from passive perception such as
face recognition [48] to active decision making such as autonomous driving [7], augmented
reality [20] and robotics [49], standard frameworks for object recognition [48], semantic
segmentation [61] and localisation [3, 26, 63] are becoming too limiting. For example,
the output of a typical object recognition [48] framework comes in the form of a labelled
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Figure 1: This figure shows globally unique instance segmentation and corresponding localisation
results for outdoor (top left quadrant), indoor (bottom left quadrant) and artificial data (right quadrant).
The left two images of each quadrant correspond to the query image and the predicted labels while the
image pair on the right corresponds to the best matching image in the database and the corresponding
labels. Note the high quality of the segmentation and localisation under changes in illumination (out-
door images), viewpoint, in the presence of smooth surfaces with little texture (indoor images) and in
the case of significant changes to the map due to missing buildings (artificial images).

bounding box which does not contain enough information for most robot interaction tasks
such as grasping. Conversely, the non object-specific output of typical semantic class seg-
mentation [61] (or detection [50]) methods severely limits the interaction possibilities of
an autonomous agent. Similarly, object instance segmentation [22] frameworks often pro-
duce inconsistent labels accross queries, thus preventing decision making accross time. Fi-
nally, standard localisation approaches [3, 26, 63] indicate only a location in a map, ei-
ther as a 6DoF camera pose prediction [26] or by specifying the most similar image in a
database [3, 63] without providing semantic information about the surrounding environment.

In this work, we propose to address the aforementioned problems by utilizing globally
unique object instance segmentation - a sub-task of semantic segmentation. For such a task,
each object of interest within the operating environment is assigned a label mask with a
globally unique instance id, as shown in Figure 1. Using this data for training a semantic
segmentation network, we obtain a model which may be used for simultaneous localisa-
tion, surrounding object recognition and segmentation. Localisation is performed in a two-
step procedure. First, fast histogram matching is performed between the predicted labels of
the query image and the database label images, resulting in a small number (~100) of well
matching candidate frames. Then, a further refinement using a slower but more accurate
label image alignment in 3 degrees of freedom (yaw, pitch, roll) is carried out.

We evaluated the proposed algorithm on multiple real and artificial datasets. We created
an artificial autonomous driving dataset using the SceneCity [2] tool and collected real world
data by tracing the original path of the CamVid [9] dataset using a panoramic Ricoh Theta
S camera. We used the Stanford 2D-3D-S [6] dataset for indoor experiments. We obtained
high localisation accuracy (above 98%) and high segmentation accuracy (above 94% global
and 52% class average for 837 object labels) on autonomous driving scenarios. While we
achieved relatively lower segmentation accuracy (61% global and 38% class average for
3138 object labels) for challenging, low-texture indoor experiments, we still obtained an
11% higher localisation accuracy than classical approaches of localisation based on keypoint
matching [29, 63] or image embedding [3]. Our contribution includes: (i) a description
of a novel semantic localisation approach using globally unique instance segmentation, (ii)
corresponding quantitative and qualitative analysis and (iii) a novel CamVid-360 dataset with

Citation
Citation
{Wu, Shen, and Hengel} 2016

Citation
Citation
{Schwarz, Milan, Periyasamy, and Behnke} 2018{}

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2017

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Yi, Trulls, Lepetit, and Fua} 2016

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016

Citation
Citation
{Yi, Trulls, Lepetit, and Fua} 2016

Citation
Citation
{Sce} 

Citation
Citation
{Brostow, Fauqueur, and Cipolla} 2009

Citation
Citation
{{Armeni}, {Sax}, {Zamir}, and {Savarese}} 2017

Citation
Citation
{Lowe} 2004

Citation
Citation
{Yi, Trulls, Lepetit, and Fua} 2016

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016



BUDVYTIS, SAUER, CIPOLLA: SEMANTIC LOCALISATION 3

986 labelled instances of buildings, trees, road signs and poles.
The rest of this work is divided as follows. Section 2 discusses relevant work in seman-

tic segmentation and localisation. Section 3 provides details of our proposed localisation
approach. Sections 4 and 5 describe the experiment setup and corresponding results.

2 Related Work
In this section we provide a discussion of various approaches to semantic segmentation and
localisation which are related to our work.
Semantic segmentation. In the field of Computer Vision, semantic segmentation encom-
passes various approaches to grouping pixels in images or videos. For example, class seg-
mentation [9, 52] is concerned with grouping pixels of the same object class (e.g. buildings,
trees or tables), whereas instance segmentation [22] aims to group pixels belonging to the
same object within the target image. Panoptic segmentation [28] is concerned with combin-
ing class segmentation output and instance segmentation output. In contrast to the afore-
mentioned semantic segmentation approaches, globally unique instance segmentation aims
to group pixels of the same object across the whole operating environment, thus providing
both segmentation and recognition simultaneously.
Image retrieval based localisation. A large subset of localisation approaches formulate
localisation as an image retrieval problem. They identify the most similar looking image in
a database primarily in two ways by employing either (i) a pipeline of keypoint detection
and matching [29, 63] or (ii) fast-to-compare image level encoding [3, 55]. Approaches of
the first type often have large storage requirements and relatively slow matching procedures.
Methods of the latter type are significantly faster, yet as suggested in [37] are more likely
to be sensitive to large occlusions and scene changes1. Both types of approach provide a
location for the whole scene and not of individual objects.
3D geometry based localisation. Another large group of localisation approaches work by
explicitly recovering 3D geometry of the environment using 3D sensors such as structured
light [24, 46], time of flight [60] cameras as well as RGB based structure from motion [54]
or mixed [6] approaches. Such works perform 3D matching between locally reconstructed
3D scenes and pre-built 3D maps either by using depth information only [24], or by using a
combination of depth and appearance information [18]. A 6DoF camera pose is recovered as
result. The majority of such approaches are computationally expensive and require relatively
large amounts of memory for storage of the environment map. Some recent techniques [26]
attempt to improve query time performance by recovering 6DoF camera pose using deep
neural networks without an explicit 3D geometry estimation. In contrast to this, and as
with image retrieval-based localisation, our proposed method not only provides a camera
location estimate but also indicates surrounding objects. It also may be used to augment the
aforementioned approaches, or use them to perform a refinement of the outputs.
Semantic localisation. Works attempting to incorporate semantic information into locali-
sation often take one of three approaches. Methods in the first group perform either explict
filtering [35] or use feature reweighting [27, 47] in order to filter out uninformative classes
of objects (e.g. cars, people) when performing image matching. Methods in the second
group attempt to fit 3D models (e.g. CAD) of a single room [44] or building [13, 14] or of
detailed maps [12, 38] as well as a combination of less precise information such as a single

1It is important to note that in our experiments described in Section 5 with NetVlad [3], a high tolerance for
changes in the images was observed. We leave a deeper investigation of this observation for future work.

Citation
Citation
{Brostow, Fauqueur, and Cipolla} 2009

Citation
Citation
{Shotton, Winn, Rother, and Criminisi} 2009

Citation
Citation
{He, Gkioxari, Dollár, and Girshick} 2017

Citation
Citation
{Kirillov, He, Girshick, Rother, and Doll{á}r} 2018

Citation
Citation
{Lowe} 2004

Citation
Citation
{Yi, Trulls, Lepetit, and Fua} 2016

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016

Citation
Citation
{Torii, Arandjelovi¢, Sivic, Okutomi, and Pajdla} 2015{}

Citation
Citation
{Noh, Araujo, Sim, Weyand, and Han} 2017

Citation
Citation
{Izadi, Kim, Hilliges, Molyneaux, Newcombe, Kohli, Shotton, Hodges, Freeman, Davison, and Fitzgibbon} 2011

Citation
Citation
{Scharstein and Szeliski} 2003

Citation
Citation
{Wolcott and Eustice} 2014

Citation
Citation
{Torii, Havlena, and Pajdla} 2009

Citation
Citation
{{Armeni}, {Sax}, {Zamir}, and {Savarese}} 2017

Citation
Citation
{Izadi, Kim, Hilliges, Molyneaux, Newcombe, Kohli, Shotton, Hodges, Freeman, Davison, and Fitzgibbon} 2011

Citation
Citation
{Gao and Zhang} 2015

Citation
Citation
{Kendall, Grimes, and Cipolla} 2015

Citation
Citation
{Naseer, Oliveira, Brox, and Burgard} 2017

Citation
Citation
{Kim, Dunn, and Frahm} 2017

Citation
Citation
{Sch{ö}nberger, Pollefeys, Geiger, and Sattler} 2018

Citation
Citation
{Satkin, Lin, and Hebert} 2012

Citation
Citation
{Chu, Wang, Urtasun, and Fidler} 2016

Citation
Citation
{Cohen, Sch{ö}nberger, Speciale, Sattler, Frahm, and Pollefeys} 2016

Citation
Citation
{Chen, Baatz, Köser, Tsai, Vedantham, Pylvänäinen, Roimela, Chen, Bach, Pollefeys, Girod, and Grzeszczuk} 2011

Citation
Citation
{Pylvänäinen, Roimela, Vedantham, Wang, and Grzeszczuk} 2010

Citation
Citation
{Arandjelovi¢, Gronat, Torii, Pajdla, and Sivic} 2016



4 BUDVYTIS, SAUER, CIPOLLA: SEMANTIC LOCALISATION

2 – alignment 
via reprojection

10201010 104010301015 2040540

1 – fast location 
identification via 
label histogram 

matching

*** *** ******

Labelled FrameLabelled Frame Labelled Frame Labelled FrameFrames with augmented labels

Query Image Global Instance Segmentation

Figure 2: This figure illustrates the key steps of our proposed localisation framework. Firstly, a
database of panoramic RGB images and corresponding globally unique, per-pixel object instance la-
bels is built for the desired environment. A multi-class label propagation [10] method is used to propa-
gate labels between key labelled frames (marked with red borders). Secondly, a semantic segmentation
network capable of predicting more than 3000 labels is trained on the collected data. Finally, for a
given panoramic query image, the corresponding instance label image predicted by the network is used
for semantic matching within the database. The matching is performed in two stages. During the first
step, a fast label histogram matching is performed in order to predict an approximate location. During
the second step, the predicted location is further refined by finding the label image in the database
which best agrees with the predicted instances. See Section 3 for more details.

large building floor plan [32, 57] or of multiple building 2D layout and corresponding height
information [4, 5, 23]. The final group of methods employ direct learning of classifiers
to output a GPS location [21, 59], or a bounding box of a specific building [64]. The first
family of approaches aims to improve localisation accuracy, yet does not provide semantic
information (e.g. identification of surrounding objects) about the environment. Methods in
the second group require expensive-to-build maps and complex fitting techniques. Note that
while [57] uses easy-to-obtain existing building plans it heavily relies on locations having
informative textual information. The examples from the final group demonstrate only coarse
localisation capability. Our method can be viewed as a member of this group.
Datasets. While the advent of deep learning has seen a proliferation of various datasets,
obtaining a dataset which would contain both (i) panoramic videos2 (or large sets of images
densely sampled at different views) and (ii) large amount globally unique object instance
labels for indoor or autonomous driving scenarious is not easily available. For example,
many of the popular real-world datasets for autonomous driving [9, 15, 19, 30, 36] or lo-
calisation [12, 37, 56] lack one or the other. Even artificial datasets [17, 25, 40, 42], or
simulators [16, 34, 39, 41, 51] often do not provide the ability to sample equirectangular im-
ages, obtain instance labels of static objects or provide only very limited urban landscapes.
In order to evaluate our localisation method, we collected our own real world and virtual
datasets for autonomous driving. For real indoor environments, we were able to identify
only the Stanford 2D-3D-S [6] dataset to contain instance segmentations of equirectangular
images, which we use in this work. Note that the Matterport 3D dataset [11] provides la-
belled meshes, however labels for equirectangular images are not provided. Artificial highly
realistic indoor datasets [31, 39, 45] suffer from similar issues as autonomous driving, pre-
venting from convenient sampling of rich, large scale, photo-realistic, equirectangular videos
with various object instance labels.

2We chose panoramic as opposed standard small field of view images for our experiments in order to emphasise
the potential of semantic localisation which is more sensitive to limited views than RGB texture based methods.
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3 Method
Our proposed semantic localisation framework comprises three key steps: (i) collecting a
database of labelled images from the environment, (ii) training a globally unique instance
segmentation network and (iii) matching the prediction on the a given query image with the
best labelled image in the collected database. A detailed description of each step is provided
bellow. See Figure 2 for an illustration.
Collecting labelled database. The database collection for the desired environment consists
of three steps. Firstly, a set of panoramic images of the environment is obtained by capturing
panoramic videos (real data) or by dense sampling of still images (artificial data). Secondly,
a subset of those images (e.g. every 30th frame) are labeled with globally unique instance
labels. Finally, an original implementation of label propagation method [10] is used to extend
the labels for the rest of the image set at full resolution with parameters of patch size p =
7, cross-correlation window dimensions W ×H = 200× 100 and label similarity constant
δ = 0.001 set empirically by following recommendations of [10]. Note that for experiments
described in this work, key frames were hand labelled, however semi-automatic methods
making use of instance segmentation such as Mask-RCNN [22] or 3D map alignment [38]
could be employed in the future.
Training a segmentation network. Once a dataset of labelled images is collected, a seman-
tic segmentation network is trained. We use the Model A variant of wide shallow residual
networks [61]. It is trained for 200 epochs using four standard Titan X GPUs and batch size
of 12 samples. Weights are initialized from a network pretrained on ImageNet [43] dataset.
Initial learning rate of 0.0001 is chosen and gradually reduced using linear schedule [33].
Note that we amended the original implementation of [61] by removing the upsampling
layer. The resulting network works well up to 4000 class labels per pixel at a moderate com-
putational cost. This is enough to cover significant areas of interest, especially when only a
subset of objects of a class of interest receives globally unique instance labels. Also note that
multiple local networks can be learned to cover even larger areas, and techniques based on
hierarchical classification [53] and embedding [8] can be used to further increase scalability.
Localisation. For any query image, a two step procedure is performed. Firstly, a small
set (~100) of the highest-matching database images in the label histogram domain is found
using the distance function Mhist . Then, an explicit alignment of query and database label
images is performed in order to find the best match under any possible rotation (distance
function Malig). The label histogram matching score Mhist ranks pairs of label images by the
number of different labels appearing in both images (|Lcom|), followed by a ranking using the
average (per-label) upper bound of intersection over union score (MIoUHist ). It is computed
as follows:

Mhist = αMIoUHist +β |Lcom|, (1)

where

MIoUHist(Q,D) =
∑∀l∈Lcom IoUupper(Q,D, l)

|Lcom|
. (2)

Here,

IoUupper(Q,D, l) =
min(|Q(l)|, |D(l)|)
max(|Q(l)|, |D(l)|)

(3)

is an upper bound of the intersection over union (IoU) score3 between the query (Q) and
database (D) images for label l. Q(l) and D(l) are the sets of pixels having class label l

3Note that the intersection over union for label l can be defined as IoU = |Q(l)∩D(l)|
|Q(l)∪D(l)| .
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for images Q and D respectively. Lcom = (LQ ∪ LD)− LQ f ilt , where LQ is a set of labels
in the query image, LD is a set of labels in the database image and LQ f ilt is a set of labels
which have less than d pixels (we use d = 20) in the query image. LQ f ilt labels are excluded
in order to gain robustness to miss-prediction of small objects. Also note that unlabelled
pixels in database images are assigned a "void" label and are excluded from the matching
calculation, as are dynamic classes (e.g. cars, pedestrians for autonomous driving scenarios).
We empirically set α = 1.0 and β = 1.0. In order to rank images during the second step, the
upper bound of the intersection over union (MIoUHist ) is replaced with an estimation of the
IoU score which utilises full label images (MIoUEst ), resulting in the following definition of

Malig = αMIoUEst +β |Lcom|. (4)

Here

MIoUEst(Q,D) = min∀R∈ROT
∑∀l∈Lcom IoUest(R(Q),D, l)

|Lcom|
, (5)

where ROT is the set of 3D rotations (yaw, pitch, roll) considered, R(Q) is a label image
rotated by R and

IoUest =
|R(Q)(l)| ∗ |RQ

′
(l)∩D(l)|
|RQ′ (l)|

|R(Q)(l)∪D(l)|
(6)

is an estimation of an IoU score for a class label l for images R(Q) and D. Here RQ
′
(l) is a

small subset (40 samples, set empirically) of randomly sampled pixels from R(Q)(l). Note
that for the experiments described in this work ROT consists of angles sampled at every
1◦ in interval (±20◦, ±20◦, ±180◦) for (yaw, pitch, roll). It is important to note that label
histogram matching algorithm is very efficient, taking less than 1 millisecond to evaluate
more than 10000 matches even with a simple implementation. Dedicated data structures
designed for fast item retrieval could be used for further improvement. While label image
alignment matching is slower, it provides more accurate image level matches and can output
the 3DoF camera view details. Our simple implementation achieved 60 FPS for 100 matches
on a Titan X GPU and can also be significantly sped up by further optimising the code, which
is out of the scope of this work.

4 Experimental Setup
In this section we describe the datasets used for indoor and autonomous driving scenarios
and explain the protocol for evaluation.
SceneCity dataset. SceneCity [2] is a Blender [1] plugin for creating artifically generated
3D urban landscapes. The generation process can be controlled via multiple environmental
parameters such as the amount of water and mountains, the road network density, the build-
ing size distribution and other parameters. This tool was used to generate three city maps
for our experiments, examples of which can be seen in Figures 1 and 3 as well as in sup-
plementary material. The first city map was borrowed from [65]. This city contained 102
buildings and 156 road segments4. To create the map for the second city, 20% of buildings
were removed from the first city at random. The final city map was generated from scratch
using the SceneCity [2] tool, resulting in 827 buildings and 966 road segments. Semantic

4Note that each road segment is a unit square (1×1) in original SceneCity coordinates correspond to the size of
typical road segment in the real world.
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Small City Small City – Missing Buildings Large City
Query Image Database Image

Alignment Image

Prediction Annotation

Query Image Database Image
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Figure 3: This figure illustrates qualitative results for globally unique instance segmentation and
localisation in three artificial SceneCity datasets corresponding to a small city, a small city with missing
buildings and a large city model. Alignment images are built by finding the best alignment between
the query label image and the database label image, followed by subsequent colouring of pixels of the
wrongly predicted label in red. Pixel colours are enhanced for better visibility. Note the high quality of
segmentation and alignment for all images. Also note how missing buildings can be identified by large
regions of red. Zoom in for better view. See supplementary material for more results.

labelling of 11 class labels (e.g. road, pole, etc.) were used for all three cities. Correspond-
ing image databases were created by sampling images (2048× 1024) at the centers of road
segments and at 6 intermediate point coordinates along the centers (with an elevation of
0.064 units above the road) of two neighbouring road segments, resulting in a total of 1146
and 6774 images for the small and large cities, respectively. For all experiments, a cloudy
sky lighting with randomly changing rotation of the sun was chosen. Query images for the
small city were obtained by sampling 300 images from the original camera path provided
in [65]. Query images for the large city consisted of 1000 samples at the center of road
segments taken at an elevation of 0.064 units above the road and at a random deviation up
to (±0.14,±0.14,±0.014) units in (X, Y, Z). The aforementioned dataset was generated in
order to evaluate our proposed method for localisation under large, highly repetitive maps as
well as under changes in the environment between data captures.
CamVid-360 dataset. CamVid-360 is a dataset of panoramic videos captured by cycling
along the original path of the CamVid [9] dataset using a Ricoh Theta S camera. It provides
an evaluation of proposed method for a real world autonomous driving scenario. As in
the SceneCity experiments, CamVid-360 is divided into two sets of images. The database
consists of 7835 images (sampled at 30 fps, 1920× 960) tracing sequences 016E5, 001TP
from the original CamVid dataset [9]. The query image set consists of 266 images (sampled
at 1 fps) tracing sequences 016E5, 001TP and 006R0, the latter corresponding to parts of the
city which are not represented in the database. The database images are labelled using the
protocol explained in Section 3 with one of 11 semantic classes and multiple globally unique
object instance labels of buildings and trees, resulting in 298 and 142 instances, respectively.
Examples of CamVid-360 images and labels can be found in Figures 1, 2, 4 and in the
supplementary material. Finally, in order to create the ground truth for localisation, each
query image was manually assigned the best matching image in the database.
Stanford-2D-3D-S dataset. The Stanford 2D-3D-S [6] dataset consists of 1413 panoramic
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(a) Query Image Database Image

Alignment Image

Prediction Annotation
Object 
Classes

Building 
Instances

Building  
and Tree 
Instances

Query Image Database Image

Alignment Image

Prediction Annotation

Query Image Database Image

Alignment Image

Prediction Annotation

(b)

(iv) - SIFT

(v) - LIFT

(i) – Object class segmentation (ii) – Building instance segmentation

(iii) - Building and tree instance segmentation

(vi) - NetVlad

Figure 4: Figure (a) illustrates qualitative results on the CamVid-360 dataset. It follows the same
visualisation format as Figure 3. Note a high accuracy overlap of class labels in different locations
(row 1, column 2). Also note that errors in image alignment seem to be mainly introduced by the
horizontal translation relative to the motion path in the database. Figure (b) shows matching accuracy
as a function of changing the confidence threshold normalized for the percentage of images accepted
(acceptance rate) at multiple error tolerances of ±1, ±5 and ±15 frames.

images from 6 indoor areas and 270 locations. 13 class labels (e.g. ceiling, table, etc.) and
6005 corresponding object instance labels are provided. This dataset is used for evaluating
our proposed localisation method for indoor robotics scenario. As with previous experi-
ments, we randomly split the dataset into an environment image database (1180 images) and
a query image set (233 images). When creating the split, it is ensured that at least one image
of each location is contained in both subsets of the datasets. Also images were resized to
2048×1024. The proposed localisation method is evaluated under multiple scenarios: when
using only class labels (11 in total), using class labels and instances of walls, ceilings and
floors (2184 in total) as well as when using all static object instances (3138 in total). Note
that we define an object as static if it is not likely to be moved in a room (e.g. bookshelf).
Examples of images from Stanford-2D-3D-S and corresponding labellings can be found in
Figures 1, 6, and in the supplementary material.
Evaluation protocol. We evaluated our proposed semantic localisation method by measur-
ing the matching accuracy (MA), defined as MA = CM

CM+IM+NM , where CM and IM are num-
bers of correctly and incorrectly matched query images which have a ground truth match in
the database, and NM is the number of images which were assigned a match but do not have
a ground truth match in the database (only applies for CamVid-360 experiments). For the
SceneCity experiments, a match was considered to be correct if query image was matched
to the closed database image in Euclidean distance. For the CamVid-360 experiments, the
matching accuracy was evaluated under three different settings, each considering a match
to be correct if the predicted database image was within a range of ±1, ±5 and ±15 video
frames from the ground truth match, respectively. Finally, for indoor experiments, a match
was considered to be correct if the query image and the recovered database image were taken
in the same room. For all experiments (see Figures 5 and 6 (b)), accuracies were reported
for the 95% acceptance rate (AR), which corresponds to a ratio between the number of
query images which have a ground truth match in a database and pass a chosen confidence
threshold with the total number of images which have a ground truth match in a database.
The acceptance rate is used in order to avoid low confidence predictions affecting matching
accuracies. Figure 4(b) illustrates how varying acceptance rate affects matching accuracy.
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(a) Localisation
Method

Match 
Function

Small City
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Large City
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Class Only
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11
77

96 78 69 11
24

97 77 68 11
80

97 78 71
Alig. 94 44 100
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112

100
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86
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100
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94

N/A N/A

98
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(b) Localisation 
Method

Matching 
Function

Lab.
W +/- 1 W +/- 5 W +/- 15

MA MA MA

Class Only
Hist.

11
7 16 31

Alig. 33 60 70

Building 
Instances

Hist.
308

18 48 81

Alig. 43 83 98

Building and 
Tree Instances

Hist.
450

17 47 84

Alig. 38 80 98

SIFT # of Desc.

N/A

71 99 99

LIFT # of Desc. 64 98 99

NetVLAD Euc. Dist. 50 90 98

Figure 5: Figure (a) illustrates quantitative results of comparing various localisation approaches on
three artificial cities. It reports matching accuracy (MA) for the best matches and segmentation quality
(GA - global accuracy, CA - class accuracy, IoU - mean intersection over union). The aforementioned
metrics are reported both for localisation via label histogram matching and more for computation-
ally expensive matching using image alignment. Figure (b) shows the quantitative evaluation on the
CamVid-360 dataset. It evaluates the proposed localisation method under three different error tolerance
settings for correct matches (±1,±5,±15 frames). See Figure 4(a) for qualitative results.

We also reported global accuracy, class accuracy of per-pixel segmentation as well as mean
intersection over union score (IoU) for the SceneCity and Stanford-2D-3D-S datasets where
the ground truth segmentation is readily available for the query images. We compared our
semantic localisation method with classic localisation techniques based on hand-designed
SIFT [29] features, learnt LIFT [63] features and NetVlad [3] image embedding. For SIFT
and LIFT based localisation we defined matching confidence by counting the number of well
matching (ratio of distances between nearest neighbours higher than 0.8) feature descriptors.
For the NetVlad [3] method we used the Euclidean distance between image embedding vec-
tors as a confidence score directly.

5 Results

In this section we discuss the results of the previously described experiments.
SceneCity dataset. Figures 3 and 5(a) provide qualitative and quantitative results on ar-
tificially generated cities. Our proposed localisation method attains high localization and
segmentation accuracies. As expected, localisation accuracies for our method using label
histogram matching are greatly improved on all three city map setups when building in-
stances are used, the smallest increase being 18% in the case of the large city map. Similarly,
using label image alignment for location refinement provides a significant improvement both
when object class labels and building instances are employed, resulting in a 20% and 14%
respective improvement in the small city map with missing buildings. More surprisingly,
label histogram localisation using building instance labels performs at the same accuracy or
better in all cities except in the case of the small city with missing buildings when compared
to classical localisation approaches (LIFT [63], SIFT [29], NetVlad [3]). Semantic locali-
sation using label image alignment and building instances outperforms all other techniques,
including the difficult scenario of missing buildings, as demonstrated in Figure 3. Also note
that in the case of missing buildings, the relatively good performance of NetVlad [3] locali-
sation contrasts with previous claims [37]. While more investigation is needed, our current
hypothesis is that image embedding techniques are more sensitive to increases in map size
(only 58% MA) than to local changes in the map. We would however expect the changes in
the map to have a larger impact as the size of the environment increases.
CamVid-360 dataset. Figures 4 and 5(b) provide quantitative and qualitative results for the
CamVid-360 dataset. As in the artificial data experiments, the same trends of significant
increases in accuracy as a result of (i) using instance labels instead of class labels and (ii)
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(b) Localisation 
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77

61 38 15
Image 
Alig.

74

SIFT # of Dsc.

N/A

55
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Figure 6: This figure illustrates qualitative (a) and quantitative (b) results on the Stanford-2D-3D-
S indoor dataset, respectively. While instance segmentation accuracy (also reflected quantitatively)
is relatively lower than in the case of the artificial data experiments or the CamVid-360 dataset, the
matching accuracy outperforms classical localisation techniques.

employing label image alignment over class histogram matching can be observed. While
localisation accuracy is rather low in the case of the low error tolerance settings, i.e. ±1
and ±5 frames, it is within 1% of classical localisation algorithms for the least conservative
setting (±15), which still corresponds to localising within the hand-labelled frames. A worse
relative performance compared to artificial city experiments can be primarily explained by
(i) not accounting for translation in image alignment and (ii) by insuficient lighting augmen-
tation. The former could be addressed by utilizing semantic 3D point clouds of the database
images. The latter can be addressed by GAN-enabled data augmentation [58, 62]. Finally,
Figure 4(b) confirms that confidence scores of both instance-based semantic localisation and
classical techniques eliminate the majority of incorrect matches at an acceptance rate lower
than 95-98%.
Stanford 2D-3D-S dataset. Qualitative and quantitative results for indoor experiments can
be found in Figure 6. Similarly to the results for autonomous driving scenerios, an increase
in the number of instances used leads to an increase in matching accuracy. However, dif-
ferently than in previous experiments, simple class histogram matching outperformed label
image alignment matching. This is expected, as relatively large translation is present be-
tween the database and query images. Nevertheless our technique significantly outperformed
SIFT [29], LIFT [63] and NetVlad [3] which, especially in the case of key-point matching
techniques, suffer in the case of lacking surface texture. Also note the high tolerance of
our proposed localisation method to relatively low segmentation accuracies when compared
to previous experiments. This is due to the low likelihood of miss-predicted object labels
having geographically close locations.

6 Conclusions
In this work, we proposed a novel approach to semantic localisation consisting of three key
steps: (i) building a database of panoramic RGB images and corresponding globally unique
object instance masks for the desired environment, (ii) training a semantic segmentation net-
work on the collected data and (iii) using a predicted global unique object instance mask
image for semantic matching within the database. This method not only provided an abil-
ity to localise within a desired database, but also to segment and recognise objects from
the surrounding environment. This is necessary for active vision applications such as au-
tonomous driving, augmented reality and robotics. Quantitative and qualitative evaluation
on indoor and autonomous driving scenerios demonstrated promising results. Our method
outperformed classical localisation techniques [3, 29, 63] in two out of three datasets.
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[55] A. Torii, R. Arandjelović, J. Sivic, M. Okutomi, and T. Pajdla. 24/7 place recognition
by view synthesis. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[56] A. Torii, J. Sivic, M. Okutomi, and T. Pajdla. Visual place recognition with repetitive
structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(11):
2346–2359, Nov 2015.

[57] S. Wang, S. Fidler, and R. Urtasun. Lost shopping! Monocular localization in large in-
door spaces. In IEEE International Conference on Computer Vision (ICCV), December
2015.

[58] T. C. Wang, M. Y. Liu, J. Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution
image synthesis and semantic manipulation with conditional gans. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[59] T. Weyand, I. Kostrikov, and J. Philbin. PlaNet - photo geolocation with convolutional
neural networks. In European Conference on Computer Vision (ECCV), October 2016.

[60] R. W. Wolcott and R. M. Eustice. Visual localization within LIDAR maps for auto-
mated urban driving. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, September 2014.

[61] Z. Wu, C. Shen, and A. V. D. Hengel. Wider or deeper: Revisiting the resnet model for
visual recognition. CoRR, abs/1611.10080, 2016.

[62] M. Wulfmeier, A. Bewley, and I. Posner. Addressing appearance change in outdoor
robotics with adversarial domain adaptation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, October 2017.

[63] K. M. Yi, E. Trulls, V. Lepetit, and P. Fua. LIFT: Learned Invariant Feature Trans-
form. In Proceedings of the European Conference on Computer Vision (ECCV), Octo-
ber 2016.

[64] Q. Yu, C. Szegedy, M. C. Stumpe, L. Yatziv, V. D. Shet, J. Ibarz, and C. Arnoud. Large
scale business discovery from street level imagery. ArXiv, abs/1512.05430, 2015.

[65] Z. Zhang, H. Rebecq, S. Forster, and D. Scaramuzza. Benefit of large field-of-view
cameras for visual odometry. In IEEE International Conference on Robotics and Au-
tomation, (ICRA), May 2016.


