DONG: FEW-SHOT SEMANTIC SEGMENTATION WITH PROTOTYPE LEARNING 1

Few-Shot Semantic Segmentation with
Prototype Learning

Nanqing Dong Cornell University
nd367@cornell.edu Ithaca, NY 14850, USA
Petuum, Inc.
Pittsburgh, PA 15222, USA
Eric P. Xing Petuum, Inc.
eric.xing@petuum.com Pittsburgh, PA 15222, USA
Abstract

Semantic segmentation assigns a class label to each image pixel. This dense pre-
diction problem requires large amounts of manually annotated data, which is often un-
available. Few-shot learning aims to learn the pattern of a new category with only a few
annotated examples. In this paper, we formulate the few-shot semantic segmentation
problem from 1-way (class) to N-way (classes). Inspired by few-shot classification, we
propose a generalized framework for few-shot semantic segmentation with an alterna-
tive training scheme. The framework is based on prototype learning and metric learning.
Our approach outperforms the baselines by a large margin and shows comparable perfor-
mance for 1-way few-shot semantic segmentation on PASCAL VOC 2012 dataset.

1 Introduction

Convolutional Neural Networks (CNNs) have led breakthroughs in many machine learning
tasks in the domain of computer vision such as image classification [13] and object detection
[28]. Even though visual learning tasks can benefit from large-scale image datasets such as
ImageNet [8], semantic segmentation still faces the challenges of requiring large amounts of
pixel-level ground truth and overfitting in a low-data regime. These challenges motivate the
study of few-shot learning in semantic segmentation.

Few-shot learning aims to learn the pattern of new concepts unseen in the training data,
given only a few labeled examples. In extreme case, there is only one example available
for each class. Many works [17, 19, 27, 30, 33, 36] have contributed to the study of few-
shot classification. Li et al. [19] proposed a complex Bayesian framework using generative
object category model. By spotting the difficulties in the gradient-based optimization, Ravi
and Larochelle [27] proposed to use a Long Short-Term Memory network (LSTM) [15] as a
meta-learner to optimize the learner. Compared with Bayesian approach and meta-learning
approach, metric learning based methods [33, 36] can achieve comparable performance with
fewer parameters and simpler optimization procedure.

In few-shot classification, each image only has one label. However, in few-shot seman-
tic segmentation, each image can contain multiple semantic classes. In an N-way k-shot
semantic segmentation task, there are a support set and a query. Each of N classes in the
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2 DONG: FEW-SHOT SEMANTIC SEGMENTATION WITH PROTOTYPE LEARNING

support set has k image and pixel-level annotation pairs. Given a support set, we want to
predict the segmentation mask for N classes for a query image. Previous studies [26, 31] on
few-shot semantic segmentation are special cases of N = 1. The formal problem definition
is illustrated in Section 3.

Inspired by previous works on few-shot classification, we have two questions: 1) can we
approach the problem with metric learning methods? 2) can we extend few-shot semantic
segmentation from 1-way to N-way? In [33, 36], the weighted nearest neighbor classifiers
are built based on the metric learned by a projection function (usually a CNN). So we can
not solve the first question by directly adapting the few-shot classifier to few-shot segmentor
in [31] because pixel-level nearest neighbor classification is computationally expensive and
slow in the inference phase. For the second question, since humans can tell the difference
between up to 30,000 object categories with limited observations [2], it may be a good start
to mimic human learning behaviors.

We propose our prototype-based few-shot semantic segmentation framework to address
these two problems. The framework is based on prototype theory from cognitive science
[29] and prototypical networks for few-shot classification [33]. Following [26, 31], we adopt
two-branched architecture. The first branch is a prototype learner which takes images and
annotations as input and outputs the prototype(s). The second branch is a segmentation net-
work which takes both a new image and the prototype(s) as input and outputs the segmen-
tation mask. The concept is illustrated in Figure 1. In the few-shot learning tasks, because
the support set contains classes unseen in the training phase, overfitting is a bottleneck that
impairs the performance. In our model, the prototype learner plays a role of both a feature
extractor for semantic information and a regularizer which prevents overfitting. By utilizing
distance metric learning and non-parametric nearest neighbor classification, we further im-
prove the performance without increasing the number of parameters. We also propose a data
augmentation technique permutation training for N-way learning tasks. The two branches
are optimized alternatively compared with [26, 31] The inference is fast since it has only one
forward pass with no additional training required. The model architecture and the training
scheme are described in Section 4.

To evaluate the performance of our framework, we experiment on PASCAL-5' [31],
which is based on PASCAL VOC 2012 dataset [11]. Various ablation studies are performed
to show the effectiveness of our N-way few-shot semantic segmentation framework. We
compare our framework with previous works in a 1-way few-shot situation and achieve state-
of-the-art performance. The details of experimental setting are presented in Section 5.

This paper makes the following contributions: (1) to the best of our knowledge, we are
the first to formulate the N-way k-shot semantic segmentation problem; (2) we propose a
prototype-based framework which is efficient for few-shot semantic segmentation tasks; (3)
we propose a few techniques to address the overfitting problem in the training process; (4) we
demonstrate the effectiveness of distance metric learning and nearest neighbor classification
in the few-shot semantic segmentation.

2 Related Work

Semantic Segmentation. Semantic segmentation is the task of associating each pixel of an
image with a semantic class label. Semantic segmentation can also be seen as a combination
of the semantic feature extraction task and the pixel-wise classification task. Fueled by recent
advances in the research of deep learning, CNNs such as VGG [32] and ResNet [13] have
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Figure 1: Illustration of a 2-way 2-shot semantic segmentation task. The prototype learner
learns the prototypes from the support set and outputs the prototypes to the segmentor. The
segmentor takes the query image and the prototypes to predict the segmentation mask. The
1-shot task can be easily extended to k-shot tasks by having k examples for each class in the
support set.

demonstrated the efficiency in both feature extraction and image classification. Based on
the success of CNNs, Fully Convolutional Networks (FCNs) [22] have been the backbone
architectures in many semantic segmentation tasks [4, 6]. However, similar to other data-
driven deep learning methods, FCN-based semantic segmentation models usually require
large amounts of annotated data. We use FCNs as the backbone models to test the few-shot
performance of the proposed framework.

Foreground-Background Segmentation. Foreground-background (FG-BG) segmentation
is the task to find the foreground pixels with features different from the background pixels.
FG-BG has played an important role in the pre-processing step for object detection [24],
face detection [21] and motion detection [25]. Without any semantic information, FG-BG
segmentation relies on either complicated model architectures or large training set to learn
the most discriminative features for the pixel-wise binary classification. In a recent study,
Wang et al. [37] and Caelles et al. [3] fine-tune a pre-trained FG-BG segmentor on the
new data and show comparable results. In a few-shot learning setting, increased model
complexity and dependency on the training data may lead to overfitting. We fine-tune FG-
BG model with pre-trained weights as a strong baseline model for 1-way learning tasks.

Few-shot Classification. Inspired by meta-learning few-shot classification, Shaban et al.
[31] first propose a meta-learning method which uses a meta-learner (conditioning branch)
to learn the small subset of parameters for the learner (segmentation branch). However, the
meta-learner only meta-learns few parameters, thus the performance is limited. Shaban et al.
[31] also adapt a Siamese Network [17] to few-shot semantic segmentation with a learned
L1 distance for pixel-wise cross similarity, but the performance is worse than the meta-
learning approach. Recent research shows that the metric learning-based methods [33, 36]
have outperformed Bayesian methods [19] and meta-learning methods [27, 30] in few-shot
classification tasks. The most related work is prototypical networks (PN). Given an episode
[36], which contains a support set of images and a query image, PN uses Euclidean distance
to measure the similarities between the embedded query image and the prototypes for each
class. Here, the prototype is defined as the mean feature vector of the embedded images for
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4 DONG: FEW-SHOT SEMANTIC SEGMENTATION WITH PROTOTYPE LEARNING

certain class. The distances (similarities) are then used to calculate the weights of a weighted
nearest neighbor classifier .

3 Problem Definition

Let S = {(xl,y )}5151 denote the support set, where x' represents an image with shape
[H',W! 3] and y' represents the corresponding annotation for x'. y' is a binary mask with
shape [H',W' 1] for certain semantic class. x? is the query image with shape [H?,W¢,3],
which is not in S. Since x' may contain multiple semantic classes while the annotation y is
only for one class, we allow x' = x/ as long as y' # y/. We choose this design for simplicity
and generalization, because an annotation containing multiple classes can be decomposed
into multiple single-class annotations.

The few-shot semantic segmentation problem can be generalized as an N-way k-shot
learning task [36]. Each method is providing with k image-mask pairs for each of N classes
(excluding the background) which are not seen in the training. We have Ng = N x k for the
support set. Given a new image, the goal is to learn a segmentation model Fg to predict
the segmentation mask for the N classes. The goal can be interpreted as learning a mapping
S — Fo(-,S). Given x4, the mapping will define a probability distribution over outputs
Fo(x1,S). Here, different from the binary mask for single-class annotation in S, Fe(x?,S5)
and the ground truth y7 both have a shape [H?,W?,N + 1].

For each episode during the training, N classes are randomly selected at first. Then
a support set S and a query image-annotation pair (x7,y7) are randomly selected based on
chosen N classes. The training objective is thus to minimize the pixel-wise multi-class cross-
entropy loss Jg,

1
Jo(w:3") =~ iigg L InFolx.S);i 0
J c

, where j ranges over all the spatial positions and ¢ € {1,...,N+ 1}. The metric used in
this paper is mean Intersection Over Union (mIOU). Unlike N-way few-shot classification
that has an intuitive baseline performance %, there is no expected random performance for
few-shot semantic segmentation.

In the supervised learning and semi-supervised learning settings, the training data and
test data have the same classes. In a standard FCN, Vc € {1,...,N + 1}, ¢ only maps to one
category (including the background). The feature maps produced by the feature extractor
are projected into a (N + 1)-channel space. The segmentation model learns the mapping
from raw pixels in the image to the projected space with the corresponding spatial position.
With fixed order of categories, techniques such as dilated convolution [6, 38], multi-scale
fusion [5, 10] and cascade architecture [7] can grasp more semantic features in supervised
learning settings, especially with a large training data. However, in few-shot learning tasks,
the test data have classes unseen in the training, these supervised techniques can easily lead
to overfitting. We have a seemingly conflicting problem in few-shot semantic segmentation.
We want to build a semantic segmentation model but we do not want the model to memorize
all the semantic information learned during the training.
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Figure 2: Illustration of the model architecture and main data flow for a 2-way 1-shot task.
(a) is the prototype learner branch. The prototype learner classifies the query set given the
support set and learns the prototypes. (b) is the segmentor branch. The segmentor takes
the query image and the prototypes learned from (a) to output the prediction segmentation
masks. (c) demonstrates how the weight W used in fusion the probability maps is calculated.
Each probability map is concatenated with the query image, the same as the query set, then
fed into the prototype learner to produce a feature vector. A similarity measure function
d(-,-) takes the feature vector and the prototype to output a similarity score. The details of
the model are described in Section 4.1 and Section 4.2.

4 Proposed Method

We propose a framework for N-way k-shot semantic segmentation based on the prototype
learning. In cognitive science, the prototype refers to some elements of a category which
are more representative than others [29]. Here, the prototype is a feature vector with high-
level discriminative information. With limited supervision, we train the network in a way
that the prediction for a semantic class is close to its prototype in certain projected space.
Following [26, 31], there are two branches. One is a prototype learner which takes S as input
and outputs the prototypes. Another branch is a segmentation model which takes both x? and
prototypes as input and produces the prediction mask. The overall architecture is illustrated
in Figure 2.

4.1 Base Architecture

Let fg denotes a feature extractor with parameters 0 in the prototype learner branch. Follow-
ing [31], the input to fy is x’ masked by y' (element-wise multiplication), which has a shape
[H,W' 3]. fo embeds the input into feature maps with M channels. We use a global average
pooling layer (GAP) to filter out the spatial information from the feature maps. The output
of GAP is a M-dimensional feature vector. Assume S, is a subset of S which only contains
semantic class ¢, we define the prototype of class ¢ as the mean feature vectors for that class:
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1
Sel

Y GAP(fy(x',y")) )
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Pc.=

, where |S.| =k . Let g4 denotes another feature extractor with parameters ¢ in the segmen-
tation branch. In theory, fg and gy can have different architecture if the number of output
channels are the same. In practice, we use the same architecture as regularization [23]. We
apply an unpooling layer (UP) [20] to restore the prototypes into feature maps with the same
shape of g4 (x7). We fuse g4 (x?) with each of the N restored prototypes by element-wise
addition. Especially, in order to distinguish the background (BG) from the prototypes, we
minus the mean feature vector of all prototypes from gy (x?). Assume m stands for the fea-
ture maps for a semantic class (including the background), we have

(a) me=gy(x) +UP(p.),  (b) mpg=gy(x?)— ZPL 3)

. The m is compressed into a single-channel feature map with a 1 x 1 convolutional layer
(conv). The concatenated N + 1-channel feature maps have different magnitudes in each
channel, thus normalized by [2-norm for each channel. Liu et al. [20] introduce a scaling
parameter for each channel. We propose to use a 1 x 1 conv followed by bilinear interpo-
lation to produce the final logits. By using 1 x 1 conv, we can utilize the efficient GPU
implementation and fuse information between different channels. Here, the 1 x 1 conv pa-
rameterized with a [N+ 1,N + 1] weight matrix W. Let [, denotes the ath channel of logits
before softmax and ng denotes the Sth channel of feature maps after normalization, we have

N+1
lo=) Wpanp @)
]

. The model is trained jointly by minimizing the Jg 4 (x7,y?) in Equation 1.

4.2 Maetric Learning

The prototypes are defined in the projected space where the distance metric is learned through
fo. We can learn more representative prototypes by learning a better distance metric in the
prototype learner branch. In addition to the prototypes of the N semantic classes, we intro-
duce one more prototype for the background. As illustrated in Figure 2, the raw images in S
and the binary masks indicating the background make a new set Spg = {(x', %) }. The pro-
totype of BG is calculated using Equation 2 where |Spg| = Nk. After we get the prototypes
P, we use a non-parametric weighted nearest neighbor classifier to categorize the semantic
class. For N-way learning task, y? can be decomposed into N 4 1 binary masks y{ where
¢ €{l,...,N+1}. The optimization goal is to maximize

o exp(d(GAPfo(x'y1)).p.))
Poly =€l ) = T o A(GAPfo(x1y))p)

, where d(-,-) stands for a similarity measure function. Let ngs be the auxiliary loss for
the prototype learner branch which is optimized alternatively with the J;eg (x4,y7) from the
segmentation branch.

&)

cls 722[0 thg pg _C|(xqay?))) ©)
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, where I.—; is a binary indicator function.

Since class BG has its own prototype, we redefine mpg using Equation 3 (a). We observe
that the last 1 x 1 conv before bilinear interpolation from Section 4.1 can be interpreted as
pixel-wise weighted nearest neighbor classification. Instead of learning the W, we propose
to use a non-parametric technique similar to the one used in the prototype learner branch to
reduce overfitting. We replace the /2-normalization on the single-channel feature maps with
an element-wise sigmoid operation. With fixed 0,

e xBld(GAP(fo(x,5)).pa))
b YN Texp(d(GAP(fo(x4,50)) )

)

, and y“é denotes the predicted probability map for class §. It is easy to show Y3 Wp o =
1. The W is bounded with constraints and it does not require parameter tuning. With the
given prototypes and fyg, the probability maps are used to calculate the W for the fusion of
themselves. In this sense, this architecture can also be seen as a self-attention mechanism
[5, 35]. There is no additional parameters compared with the base model, but the prototypes
can grasp more discriminative features and the segmentor will gradually shift its feature
space towards the feature space of the prototypes.

Since y7 are continuous values between 0 and 1, the distribution of $¢ and y? may not be
aligned. To speed up the convergence and regularize the learning process of the segmentation
branch, for each class, we optimize the cross entropy between )7% and y? as in a standard FG-
BG segmentation task. After g4 is "warmed up" to produce realistic probability masks, then

we switch to optimize J;.

Shaban et al. [31] observe that the conditional branch converges faster than the seg-
mentation branch in the two-branch framework. We also have this situation in our study.
As discussed in [12, 18], different networks (branches) may not be optimal at the same time.
Compared with the joint training in Section 4.1, we choose to optimize 8 and ¢ alternatively.

4.3 Permutation Training

In the supervised learning tasks, data augmentation techniques are used to avoid the overfit-
ting. These techniques usually modify the original images, such as adding noise to the raw
images, making geometric transformation and using part of the images [10, 13, 14, 32, 34].
Here, we propose the permutation training in few-shot semantic segmentation. For an N-way
learning task, there are N + 1 classes. In the training, the concatenation of the single-channel
feature maps have an order (which class comes first and which class comes last), which de-
pends on the input order of the prototypes. There are (N + 1)! different orders in total. For
an episode with S and (x4,y9), we train the model with different orders of the prototypes.
In practice, we randomly select a subset of the whole orders when N is large. The core
idea behind this technique is to make the network discriminative to the difference between
prototypes, instead of memorizing all the semantic information. The overview of the whole
training pipeline is provided in Algorithm 1. The prototype learner is expected to produce
discriminative representations of the prototypes to the segmentor. In practice, we use a large
learning rate for the prototype learner.
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Algorithm 1: Training an episode for a N-way k-shot semantic segmentation task given
a support set S and a query image-label pair (x4,y?). A and B are non-zero integers
indicating the number of iterations, default value are both 1.

Input: S, (x7,y9)

forae{l,..A} do

‘ Train the prototype learner by minimizing Jg“

end

Get N + 1 prototypes

Sample B orders from (N + 1)! orders uniformly

for b € {1,..B} do
Order the prototypes
Train the segmentation model with the ordered prototypes by minimizing J‘fg

end

S Experiments

We conduct several experiments to evaluate the performance of the proposed method on the
task of N-way k-shot learning tasks. Following the experimental protocol defined by Shaban
et al. [31], we experiment on PASCAL-5' and use the same splits of hold-out classes. The
training set consists all the images and annotations containing non-held-out classes while
held-out classes are masked as background during the training.

The experiments are implemented by Tensorflow [1] on Nvidia GTX Titan X GPU. In
the experiments, fg and g4 both use convolutional blocks conv1-conv5 of a standard VGG16
[32] as shown in Figure 2. Same as [26, 31], the weights of VGG16 are initialized from a
model pre-trained on the ImageNet [8]. According to [33], we choose d(a,b) = —||a — b||?
as the similarity measure function. We use the ADAM optimizer [16] for both branches. The
initial learning rate is 103 for the prototype learner branch and is 10~ for the segmentor
because we expect the prototype learner to converge first. The training process can be di-
vided into three phases. We first train the prototype learner alone to make the image-wise
nearest neighbor classifier starts to converge. Then we warm up the segmentor as described
in Section 4.2 to produce high quality FG-BG results for each class. At last, the whole sys-
tem is trained jointly with Algorithm 1. The learning rates are decreased by multiplying 0.1
after every 5000 episodes and is fixed when it becomes 10~°. In each episode, B is set to be
(N + 1)! for permutation training.

5.1 N-way Semantic Segmentation

Considering the limited class available in PASCAL-5!, we choose N = 2 without losing
generality. Because 2-way examples are scarce and the examples are unbalanced in each
subset, we choose the subset containing "person" as the held-out classes. We sample 500
S-(x7,y7) pairs that contain the "person" and another held-out class for evaluation while
trained on the other three subsets. The baseline is a standard FCN, which is gy with a 1
conv followed by bilinear interpolation. By extending the ground truth from 2 channels to 3
channels, S is used to fine tune the model until the segmentation loss converges. The baseline
is denoted as FT. We compare the proposed methods described in Section 4. The first model
is the base model in Section 4.1, denoted as Base. The second model is the base model with
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mIOU(%) 1-shot 5-shot mIOU(%) 1-shot 5-shot
FT 28.1 28.6 FG-BG [3, 26] 55.1 55.6
Base 34.8 35.0 OSSIS [26,31] | 55.2 -
PL 39.7 40.3 co-FCN [26] 60.1 60.8
PL + SEG 41.9 42.6 PL 60.0 60.9
PL + SEG + PT | 42.7 43.7 PL + SEG 61.2 62.3
Table 1: Results of 2-way Few-Shot Table 2: Results of 1-way Few-Shot
Segmentation on PASCAL-5! Segmentation on PASCAL-5!

image-wise nearest neighbor classification in the prototype learner branch (first paragraph of
Section 4.2, denoted as PL. The third model is the PL with the pixel-wise nearest neighbor
classification in the segmentation branch (rest of Section 4.2), denoted as PL + SEG. The
last one is PL + SEG with permutation training (4.3), denoted as PL + SEG + PT. The 1-shot
and 5-shot results are presented in Table 1. It can be shown that the FT performs worse than
prototype-based methods in N-way situations. Some predictions of the complete pipeline
along with the corresponding support set are presented in Figure 3. There are models that
use graphical models such as conditional random field (CRF) to refine the probability maps
for semantic segmentation [4, 6]. CRF can also be used in our model as an additive module,
but it is beyond the scope of this paper.

5.2 1-way Semantic Segmentation

Even though the focus of this paper is multi-way few-shot semantic segmentation, we also
perform one-way experiments to compare with the state-of-the-art. Same as [26], we sample
1000 S-(x?,y?) pairs that contain the held-out classes for evaluation. We mainly compare
with three previous methods, which are fine-tuning the pre-trained FG-BG segmentor (FG-
BG) [3], meta-learning the parameters (OSSIS) [31] and co-FCN [26]. For 1-way task, the
effect of permutation training on the performance is marginal, so we don’t use permuta-
tion training in the 1-way experiments. The results are provided in Table 2 !. It is worth
noting that co-FCN shares similar architecture with our Base in 1-way scenario. co-FCN
discriminates the FG from BG with both positive and negative annotations. In our method,
prototype learning can achieve similar discriminative effect while the learned prototypes are
interpretable. PL and PL + SEG consistently outperform co-FCN in 5-shot tasks. Though
the 1-way performance are close between co-FCN and the proposed methods, it is hard for
co-FCN to generalize to multi-way scenario directly.

6 Conclusions

Few-shot learning has been investigated in many computer vision tasks such as image recog-
nition [33, 36] and domain adaption [9, 23]. However, the few-shot semantic segmentation
is still underexplored. In this paper, we formulate the N-way k-shot semantic segmentation
problem. Fueled by recent advances in few-shot image recognition, we tackle the few-shot
semantic segmentation problem by reducing the overfitting. We propose a generalized few-
shot semantic segmentation framework based on prototype learning and metric learning. We

'We maximally tried to reproduce the experimental settings in [26]. There may be some discrepancy in the
experimental settings (e.g. sampling).
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(a) Dining Table (b) Dog (c) Horse (d) Motorbike

Figure 3: Some qualitative results of our method for 2-way 1-shot semantic segmentation.
The images are fitted to square shape for visualization.

outperform the baselines by a large margin in N-way and achieve comparable performance
in 1-way few-shot learning tasks.
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