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Abstract

Image translation between two domains is a class of problems where the goal is to
learn the mapping from an input image in the source domain to an output image in the tar-
get domain. It has important applications such as data augmentation, domain adaptation,
and unsupervised training. When paired training data are not accessible, the mapping
between the two domains is highly under-constrained and we are faced with an ill-posed
task. Existing approaches tackling this challenge usually make assumptions and intro-
duce prior constraints. For example, CycleGAN [59] assumes cycle-consistency while
UNIT [31] assumes shared latent-space between the two domains. We argue that none
of these assumptions explicitly guarantee that the learned mapping is the desired one.
We, taking a step back, observe that most image translations are based on the intuitive
requirement that the translated image needs to be perceptually similar to the original im-
age and also appear to come from the new domain. On the basis of such observation, we
propose an extremely simple yet effective image translation approach, which consists of
a single generator and is trained with a self-regularization term and an adversarial term.
We further propose an adaptive method to search for the best weight between the two
terms. Extensive experiments and evaluations show that our model is significantly more
cost-effective and can be trained under budget, yet easily achieves better performance
than other methods on a broad range of tasks and applications.

1 Introduction
Many computer vision problems can be cast as an image-to-image translation problem,
whose task is to map an image in one domain to a corresponding image in another do-
main. For example, image colorization can be considered as mapping a gray-scale image
to a corresponding image in RGB space [57]; style transfer can be viewed as translating an
image in one style to a corresponding image with another style [12, 13, 20]. Other tasks

1Esther is an English name and means “star” in Persian.
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falling into this category include semantic segmentation [33], super-resolution [27], image
manipulation [19], etc. Another important application of image translation is related to do-
main adaptation and unsupervised learning: with the rise of deep learning, it is now consid-
ered crucial to have large labeled training datasets such as ImageNet [43] and COCO [28].
However, labeling and annotating such large datasets are expensive and not scalable. An
alternative is to use synthetic or simulated data for training, whose labels are trivial to ac-
quire [7, 21, 35, 39, 41, 44, 51, 60]. Unfortunately, learning from synthetic data can be
problematic and most of the time does not generalize to real-world data, due to the statistical
gap between the two domains. Furthermore, for deep neural networks which are powerful
to learn small details, it is anticipated that the trained model easily over-fits to the synthetic
domain. In order to close this gap, we can either find mappings or domain-invariant repre-
sentations at feature level [1, 4, 6, 11, 15, 22, 34, 49, 52] or learn to translate images from one
domain to another domain to create “fake” labeled data for training [5, 27, 30, 31, 56, 59].
In the latter case, we usually hope to learn a mapping that preserves the labels and as well as
the attributes we care about most.

Typically there exist two settings for image translation given two domains X and Y . The
first setting is supervised, where example image pairs x,y are available. This means for
the training data, for each image xi ∈ X there is a corresponding yi ∈ Y , and we wish to
find a translator G : X → Y such that G(xi) ≈ yi. Representative translation systems in the
supervised setting include domain-specific works [10, 18, 25, 33, 46, 54, 55, 57] and the
more general Pix2Pix [19, 53]. However, paired training data is rarely easy to acquire. For
example, for image stylization, obtaining paired data requires lengthy artist authoring and
is extremely expensive. For other tasks like object transfiguration, the desired output is not
even well defined.

Therefore, we focus on the second setting, which is unsupervised image translation. In
the unsupervised setting, X and Y are two independent sets of images, and we do not have
access of paired examples showing how an image xi ∈ X could be translated to an image yi ∈
Y . Our task is then to seek an algorithm that can learn to translate between X and Y without
desired input-output examples. The unsupervised image translation setting potentially has
greater applications because of its simplicity and flexibility to use but is also much more
difficult. In fact, it is a highly under-constrained and ill-posed problem, since there could be
unlimited number of mappings between X and Y : from the probabilistic view, the challenge
is to learn a joint distribution of images in different domains. As stated by the coupling
theory [29], there exists an infinite set of joint distributions that can arrive the two marginal
distributions in two different domains. Therefore, additional assumptions and constraints are
needed for us to exploit the structure and supervision necessary to learn the mapping.

Existing works that address this problem assume that there is some relationship between
the two domains. For example, CycleGAN [59] assumes cycle-consistency and the exis-
tence of an inverse mapping F that translates from Y to X . It then trains two generators
which are bijections and inverse to each other and uses adversarial constraint [14] to ensure
the translated images appear to be drawn from the target domain and the cycle-consistency
constraint to ensure the translated image can be mapped back to the original image using the
inverse mapping (F(G(x)) ≈ x and G(F(y)) ≈ y). UNIT [31], on the other hand, assumes
shared-latent space, meaning a pair of images in different domains can be mapped to some
shared latent representations. The model trains two generators GX ,GY with shared layers.
Both GX and GY map an input to itself, while the domain translation is realized by letting
xi go through part of GX and part of GY to get yi. The model is trained with an adversar-
ial constraint on the image, a variational constraint on the latent code [24, 40], and another
cycle-consistency constraint.
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Assuming cycle-consistency clearly ensures 1-1 mapping and avoids mode collapses [45],
and both models generate reasonable image translation and domain adaptation results. How-
ever, there are several issues with such approaches. First and foremost, cycle-consistency
does not guarantee that the mapping learned is the desired mapping. Theoretically, Cycle-
GAN could find any arbitrary 1-1 mapping that satisfies the constraints. Having multiple
global optima is problematic since, in our experiments, we observed that the training is far
from stable, meaning it does not guarantee to converge or reproduce the same results every
time. Second, there is a sensitive trade-off between the faithfulness of the translated image
to the input image and how similar it resembles the new domain, and it requires excessive
manual tuning of the weight between the adversarial loss and the reconstruction loss to get
satisfying results. Third, most of the time we only care about one-way translation, while Cy-
cleGAN always requires the training of two generators that are bijections. This is not only
cumbersome but it is also hard to balance the effects of the two generators.

We propose a much simpler yet more effective image translation model called Extremely
Simple image Translation tHrough sElf-Regularization (ESTHER). We first re-consider
what should be the desired output of an image translation task: most of the time the desired
output should not only resemble the target domain but also preserve certain attributes and
share similar visual appearance with input. For example, in the case of horse-zebra transla-
tion [59], the output zebra should be similar to the input horse in terms of the scene back-
ground, the location and the shape of the zebra/horse, and the only thing that we wish to add
is the black-white stripes that specifically belong to a zebra. In the domain adaptation task
that translates MNIST [26] to USPS [9], we expect the output is visually similar to the input
in terms of the shape and structure of the digit such that it preserves the label. Based on such
observation, our model proposes to use a single generator that maps X to Y and is trained
with a self-regularization term that enforces perceptual similarity between the output and the
input, together with an adversarial term that enforces the output to appear like drawn from
Y . We further propose an automatic and principle way to find the optimal weight between
the self-regularization term and the adversarial term such that we do not have to manually
search for the best hyper-parameter. Lastly, in order to create sharp and more realistic look-
ing results, we introduce several design choices of the network architecture, which prove to
improve the quality and resolution of the output images.

Our model does not rely on cycle-consistency or shared representation assumption, and it
only learns one-way mapping. This makes training of the model simpler and more efficient.
Although the constraint is susceptible to oversimplify certain scenarios, we found that the
model works surprisingly well in a wide variety of image translation and domain adaptation
tasks, achieving superior qualitative and quantitative results. In the end, we discuss the face
3D morphable model [2] prediction as a useful real-world application of our approach. We
also carefully analyze the relation between our approach and CycleGAN/UNIT and argue
that neither cycle-consistency or shared representation is a necessary assumption.

2 Our Method
We begin by explaining our model for unsupervised image translation. Let X and Y be
two image domains, our goal is to train a generator Gθ : X → Y , where θ are the function
parameters. We are given unpaired samples x and y, and the unsupervised setting assumes
that x and y are independently drawn from the marginal distributions Px∼X (x) and Py∼Y (y).
Let y′ = Gθ (x) denote the translated image, the key requirement is that y′ should appear
like drawn from domain Y , while preserving the low-level visual characteristics of x. The
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Figure 1: Model overview. Our model consists of a single generator G that maps an image
from one domain to another domain. We train G using the self-regularization perceptual loss
and the adversarial loss.

translated images y′ can be further used for other downstream tasks such as unsupervised
learning but in our case, we decouple image translation from its applications.

Based on the requirements described, we propose to learn θ by minimizing the following
losses:

LG(θ) = `adv(Gθ (x),Y )+λ`reg(x,Gθ (x)). (1)

The first part of the losses, `adv, is the adversarial loss on the image domain that makes
sure that Gθ (x) appears like domain Y . The second part of the losses `reg makes sure that
Gθ (x) is visually similar to x. `adv is given by a discriminator D trained jointly with G, and
`reg is measured with perceptual loss. Note that similar formulations have been used in [47]
for simulated image refinement and [20] for style transfer, however no existing works have
generalized it as a principal framework for general image translation and domain adaptation
tasks, neglecting its unique power that can solve a much wider range of problems.
The model architectures: Our model consists of a generator G and a discriminator D. The
generator G is based on Fully Convolutional Network (FCN) and leverages properties of
convolutional neural networks, such as translation invariance and parameter sharing. Simi-
lar to [19, 59], the generator G is built with three components: a down-sampling front-end
to reduce the size, followed by multiple residual blocks [17], and an up-sampling back-end
to restore the original dimensions. The down-samping front-end consists of three convolu-
tional layers, each with a stride of 2. The intermediate part contains nine residual blocks that
keep the height/width constant, and the up-sampling back-end consists of three transposed
convolution, also with a stride of 2. Each convolutional layer is followed by batch normal-
ization and ReLU activation, except for the last layer whose output is in the image space.
Using down-sampling at the beginning increases the receptive field of the residual blocks
and makes it easier to learn the transformation at a smaller scale. Another modification is
that we adopt the dilated convolution in all residual blocks, and set the dilation factor to 2.
Dilated convolutions use spaced kernels, enabling it to compute each output value with a
wider view of input without increasing the number of parameters and computational burden.
For the discriminator, we use a five-layer convolutional network. The first three layers have a
stride of 2 followed by two convolution layers with stride 1, which effectively down-samples
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the networks three times. The output is a vector of real/fake predictions and each value cor-
responds to a patch of the image. Classifying each patch as real/fake introduces PatchGAN,
and is shown to work better than the global GAN [19, 59].
The image domain adversarial loss: The vanilla Generative Adversarial Network [14] loss
plays a two-player min-max game to update the network G and D. G learns to translate the
image x to y′ which appears as if it is from Y , while D learns to distinguish y, which is a
real image from Y , from the generated image y′. The parameters of D and G are updated
alternatively. The discriminator D updates its parameters by minimizing the following loss:

LD(φ) = log(Dφ (y′))− log(
−→
1 −Dφ (y)). (2)

Here φ is the parameters of D. Note that here D outputs a vector of predictions instead
of one values. The image domain adversarial loss used to update the generator G is defined
as:

`adv(Gθ (x),Y ) =− log(
−→
1 −Dφ (Gθ (x))). (3)

By minimizing the loss function, the generator G learns to create translated image that
fools the network D into classifying the image as sampled from Y . Jointly training G and D
with constraints (2), (3) yields to minimize the following combined GAN objective:

LGAN(G,D,X ,Y ) = Ey∼Y [logD(y)]+Ex∼X [log(1−D(G(x)))]. (4)

The self-regularization loss: Theoretically, adversarial training can learn a mapping G that
produces outputs identically distributed as the target domain Y . However, if the capacity is
large enough, a network can map the input images to any random permutations of images in
the target domain. Thus, adversarial loses alone cannot guarantee that the learned function G
maps the input x to the desired output y. To further constrain the learning mapping such that it
is meaningful, we argue that the mapping function G should preserve visual characteristics of
the input image. In other words, the output and the input need to share perceptual similarities,
especially regarding the low-level features. Such features may include color, edges, shape,
objects, etc. We impose this constraint with the self-regularization term, which is modeled
by minimizing the distance between the translated image y′ and the input x: `reg = d(x,G(x)).
Here d is some distance function d, which can be `2, `1, SSIM, etc. However, recent research
suggests that using perceptual distance based on a pre-trained network corresponds much
better to human perception of similarity comparing with traditional distance measures [58].
Known as the perceptual loss, it is defined as:

`reg(y′,x) = ∑
l

1
HlWl

∑
h,w

(‖ wT
l ◦ (F̂(x)l

hw− F̂(y′)l
hw) ‖2

2). (5)

Here F̂ is a pre-trained network to extract the neural features. We use l to represent each
layer, and Hl ,Wl are the height and width of feature F̂ l . We compute the `2 difference at
each location h,w of F̂ l and average over the feature height and width. In our experiment,
we use VGG-19 pre-trained on ImageNet [48]. We extract neural features with F̂ across
multiple layers, each scaled by a layer-wise weight. We did extensive experiments to try
different combinations of feature layers and obtained the best results by only using the first
three layers of VGG-19 and set the layer-wise weight w1,w2,w3 to be 1.0/32,1.0/16,1.0/8
respectively. This conforms to the intuition that we would like to preserve the low-level
traits of the input during translation. Note that this may not always be true (such as in texture
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transfer), but it is a hyper-parameter that could be easily adjusted based on different problem
settings. We also experimented with using different pre-trained networks such as AlexNet to
extract neural features as suggested by [58] but do not observe much difference in results.
Adaptive weight induction: Like other image translation methods, the resemblance to the
new domain and faithfulness to the original image is a trade-off. In CycleGAN and UNIT,
it is controlled by the weight between the cycle-consistency constraint and the adversarial
constraint. To our approach, it is determined by the weight λ of the self-regularization term
relative to the image adversarial term. If λ is too large, the translated image will be close to
the input but does not look like the new domain. If λ is too small, the translated image would
fail to pertain the visual traits of the input. Previous approaches usually decide the weight
heuristically. Here we propose an adaptive scheme to search for the best λ : we start by
setting λ = 0, which means we only use the adversarial constraint to train the generator. Then
we gradually increase λ . This would lead to the increase of the adversarial loss as the output
would shift away from Y to X , which makes it easier for D to classify. We stop increasing
λ when the adversarial loss sinks below some threshold `t

adv. We then keep λ constant and
continue to train the network until converging. Using the adaptive weight induction scheme
avoids manual tuning of λ for each specific task and gives results that are both similar to the
input x and the new domain Y .

Even though our approach assumes the perceptual distance between x and its correspond-
ing y∈Y is small, our approach generalizes well to tasks where the input and output domains
are significantly different, such as translation of photo to map, day to night, etc., as long as
our assumption generally holds. For example, in the case of photo to map, the park (photo)
is labeled as green (map) and the water (photo) is labeled as blue (map), which provides
certain low-level similarities. We additionally observe that our results are consistently sim-
ilar or better than CycleGAN/UNIT, even in the extreme case when we swap the color of
the map labels to deliberately destroy the perceptual similarity, showing that using a more
general cycle-consistency assumption does not benefit the performance of image translation.
Note that our approach is a meta-algorithm, and we could potentially improve the results by
using new/more advanced components. For example, the generator and discriminator could
be easily replaced with the latest GAN architectures such as LSGAN [36], WGAN-GP [16],
or adding spectral normalization [37]. We may also improve the results by employing a more
specific self-regularizaton term that is fine-tuned on the datasets we work on.

3 Results
We tested our model on a variety of datasets and tasks. In the following, we show the quali-
tative results of image translation, as well as quantitative results in several domain adaptation
settings. For each dataset, regardless of the size, we trained 10k iterations with batch size
32. All images are resized to 256x256. We used Adam solver [23] to update the model
weights during training. In order to reduce model oscillation, we update the discriminators
using a history of generated images rather than the ones produced by the latest generative
models [47]. Similar to [59], we keep an image buffer that stores the 50 previously gener-
ated images. All networks were trained from scratch with a learning rate of 0.0002. Starting
from 5k iteration, we linearly decay the learning rate over the remaining 5k iterations. For
each dataset, the training takes about 1 day to finish on a single Titan X GPU. For qualitative
evaluation, we compare the results with UNIT [31] and CycleGAN [59]. For quantitative
evaluation, we tested unsupervised classification, and compare the results against standard
benchmarks. In the end, we describe the 3DMM face shape prediction task as a specific
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real-world application of our approach. Due to the simplicity of our model, our training
takes significantly less memory and time comparing with CycleGAN and UNIT and can be
trained with a more constrained budget: to train 200 epochs of the map dataset, each (ap-
proximately) requires: 12 hrs & 2.5 GB (ours); 36 hrs & 4.5 GB (CycleGAN); 44 hrs & 4.5
GB (UNIT).

3.1 Qualitative Results
Figure 2 shows visual results of image translation on several datasets and compares with
CycleGAN and UNIT. All models are trained using the same number of iterations, and the
results are randomly sampled from the test set. Note that CycleGAN’s results could be
slightly different every time it trains, and the results shown are from a random trial. We can
see from the examples that our results are sharper and of higher visual quality comparing
with CycleGAN and UNIT; the colors of our results also better match with the inputs.

Figure 3 shows more of our image translation results in a wide range of settings. Al-
though many of these tasks have very different source and target domains, our method shows
strong generalization ability, demonstrating that our “perceptual similarity assumption” is
general and widely applicable.
User study: To more rigorously evaluate the performance, we conduct a user study based
on the image translation tasks. We asked for feedback from 10 users, by giving each user 30
tuples of images to rank. Each tuple contains results of CycleGAN, UNIT and our method
on some translation task. The user study shows that our method achieves highest scores,
outperforming CycleGAN and UNIT by a large margin: comparing with CycleGAN, ours
are 64.4% (better), 20.0% (about the same) and 15.6% (worse); comparing with UNIT, ours
are 91.7% (better), 7.1% (about the same) and 1.2% (worse).
Effects of using different layers as feature extractors: We experimented using different
layers of VGG-19 as feature extractors to measure the perceptual loss. Fig. 4 shows visual
example of the horse to zebra image translation results trained with different perceptual
terms. We can see that only using high-level features as regularization leads to results that are
almost identical to the input (Fig. 4 (c)) while only using low-level features as regularization
leads to results that are blurry and noisy (Fig. 4 (b)). We find the balance by adopting the
first three layers of VGG-19 as feature extractor which does a good job of image translation
and also avoids introducing too many noise or artifacts (Fig. 4 (d)).

3.2 Quantitative Results
Map prediction: We translate images from satellite photos to maps with unpaired training
data and compute the pixel accuracy of predicted maps. The original photo-map dataset
consists of 1096 training pairs and 1098 testing pairs, where each pair contains a satellite
photo and the corresponding map. To enable unsupervised learning, we take the 1096 photos
from the training set and the 1098 maps from the test set, using them as the training data.
At test time, we translate the test set photos to maps and again compute the accuracy. If
the total RGB difference between the color of a pixel on the predicted map and that on the
ground truth is larger than 12, we mark the pixel as wrong. Figure 5 and Table 1 show the
visual results and the accuracy results, and we can see our approach achieves highest map
prediction accuracy. Note that Pix2Pix is trained with paired data.
Unsupervised classification: We show unsupervised classification results on USPS [9] and
MNIST-M [11] in Figure 6 and Table 2. On both tasks, we assume we have access to labeled
MNIST dataset. We first train a generator that maps MNIST to USPS or MNIST-M and
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(a) Input (b) CycleGAN (c) UNIT (d) Ours

Figure 2: Examples of image translation results comparing with UNIT and CycleGAN. From
top to bottom: horse to zebra [19] 1, 2; dawn to night (SYNTHIA [42]); non-smile to smile
(CelebA [32]), photo to Vangoh [19]. Best viwed in full resolution and color.

then use the translated image and original label to train the classifier. We can see from the
results that we achieve the highest accuracy on both tasks, advancing state-of-the-art. The
qualitative results clearly show that our MNIST-translated images both preserve the original
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Figure 3: Examples of image translation results on a variety of datasets. From top to bottom
and left to right: Yosemite summer to winter [19], apple to orange [19], cat to dog [38], dog
to cat [38], edges to shoes [19], edges to handbags [19], SYNTHIA summer to winter [42],
photo to DSLR [19], SYNTHIA to cityscape [8, 42].

(a) (b) (c) (d)

Figure 4: Effects of using different layers as feature extractors. From left to right: input (a),
using the first two layers of VGG (b), using the last two layers of VGG (c) and using the first
three layers of VGG (d).

input Pix2Pix CycleGAN Ours GT

Figure 5: Unsupervised map prediction visualization.

Method Accuracy
Pix2Pix [19] 43.18%

CycleGAN [59] 45.91%
Ours 46.72%

Table 1: Unsupervised map
prediction accuracy.

label and are also visually similar to USPS/MNIST-M.
3DMM face shape prediction: As a real-world application of our approach, we study
the problem of estimating 3D face shape, which is modeled with the 3D morphable model
(3DMM) [3]. 3DMM is widely used for recognition and reconstruction. For a given face,
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(a) (b) (c) (d) (e) (f)

Figure 6: Visualization of image translation from
MNIST (a),(d) to USPS (b),(e) and MNIST-M
(c),(f).

Method USPS MNIST-M
CoGAN [30] 95.65% -
PixelDA [5] 95.90% 98.20%
UNIT [31] 95.97% -

CycleGAN [59] 94.28% 93.15%
Target-only 96.50% 96.40%

Ours 96.80% 98.33%

Table 2: Unsupervised classification
results.

(a) (b) (c) (d) (e) (f)

Figure 7: Visualization of rendered face to real face translation.
(a)(d): input rendered faces; (b)(e): CycleGAN results; (c)(f): Our
results.

Method MSE
Baseline 2.26

CycleGAN [59] 2.04
Ours 1.97

Table 3: Unsupervised
3DMM prediction re-
sults (MSE).

the model encodes its shape with a 100 dimension vector. The goal of 3DMM regression is
to predict the 100 dimension vector and we compare them with the ground truth using mean
squared error (MSE). [50] proposes to train a very deep neural network [17] for 3DMM
regression. However, in reality, the labeled training data for real faces are expensive to
collect. We propose to use rendered faces instead, as their 3DMM parameters are readily
available. We first rendered 200k faces as the source domain and use human selfie photo
data of 645 face images we collected as the target domain. For test, we use our collected
112 3D-scanned faces as test data. For the purpose of domain adaptation, we first use our
model to translate the rendered faces to real faces and use the results as the training data,
assuming the 3DMM parameters stay unchanged. The 3DMM regression model structure
is 102-layer Resnet [17] as in [50], and was trained with the translated faces. Figure 7 and
Table 3 show the qualitative results and the final accuracy of 3DMM regression. From the
visual results, we see that our translated face preserves the shape of the original rendered
face and has higher quality than using CycleGAN. We also reduced the 3DMM regression
error compared with baseline (where we trained on rendered faces and tested on real faces)
and the CycleGAN results.

4 Conclusion
We propose an extremely simple yet effective model for image translation and domain adap-
tation and achieve superior performance in a variety of tasks demonstrated by both qualitative
and quantitative evaluations. Our model is also more cost-effective, requiring significantly
less training budget. Extensive experiments demonstrate that it is powerful and general, and
can be easily applied to solve real-world tasks. As a result, we argue that image translation
can be made simple whereas the commonly used cycle-consistency and shared latent space
assumptions are not necessary.
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