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Abstract

Colorectal polyps are important precursors to colon cancer, the third most common
cause of cancer mortality for both men and women. It is a disease where early detection
is of crucial importance. Colonoscopy is commonly used for early detection of cancer
and precancerous pathology. It is a demanding procedure requiring a significant amount
of time from specialized physicians and nurses, in addition to a significant miss-rates
of polyps by specialists. Automated polyp detection in colonoscopy videos has been
demonstrated to be a promising way to handle this problem. However, polyps detection
is a challenging problem due to the availability of limited amount of training data and
large appearance variations of polyps. To handle this problem, we propose a novel deep
learning method Y-Net that consists of two encoder networks with a decoder network.
Our proposed Y-Net method relies on efficient use of pre-trained and un-trained models
with novel sum-skip-concatenation operations. Each of the encoders are trained with
encoder specific learning rate along the decoder. Compared with the previous methods
employing hand-crafted features or 2-D/3-D convolutional neural network, our approach
outperforms state-of-the-art methods for polyp detection with 7.3% F1-score and 13%
recall improvement.

1 Introduction
Colorectal cancer is a major cause of morbidity and mortality throughout the world [9].
Early diagnosis is particularly relevant for colorectal cancer. The detection and removal of
precancerous polyps in the colon may prevent later cancer. Screening the population for
precursor lesions or manifest early colon cancer has been an important goal for decades
[12][16]. Colonoscopy is often considered as gold standard because it allows an exami-
nation of the complete colon and it can remove pre-cancerous polyps immediately. It is a
demanding procedure requiring significant amount of time from specialized physicians and
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2 Y-NET: A DEEP CONVOLUTIONAL NEURAL NETWORK TO POLYP DETECTION

nurses. Research works on colonoscopies have indicated significant miss-rates of 27% for
small adenomas (< 5 mm) and 6% for adenomas of more than 10 mm diameter. There are
multiple factors that contribute to missed polyps at colonoscopy including quality of bowel
preparation and experience of the colonoscopist [6].

Colon polyps grow in two different shapes. Pedunculated polyps have mushroom-like
tissue growths and sessile polyps have flat structures that sits on the surface of the mucous
membrane. Automated polyp detection techniques [19][3][1] can be used to mitigate the
miss-rates and compliment colonoscopist in fast diagnosis. However, high precision and re-
call automated polyp detection is a challenging problem since colon polyps exhibit different
size, orientation, color, and texture. We depicted these variations in Fig. 1.

To detect colon polyps, researchers propose different methods [19][3] based on hand-
crafted features. These methods could not cope significantly with the problem of modeling
distinctive features that differentiate polyps from normal mucosa. Therefore, deep convolu-
tional neural networks (CNNs) are proposed to detect and localize colon polyps [4][20] that
have presented very good performance. It is worth noting that CNN based methods require
large labeled datasets for training. However, large medical datasets are not readily available
due to proprietary rights and privacy concerns.

To cope with the aforementioned problem, we propose Y-Net, a novel encoder-decoder
hybrid deep neural network that can be trained with limited amount of training data. Our
proposed Y-Net deep model is capable of detecting and localizing different colon polyps
regardless of orientation, shapes, texture, and size. In fact, our method is inspired by U-
Net [14]. Our method is different from U-Net in that we use ensemble of encoders with
and without pre-trained network and learn a decoder network and without extensive data
augmentation. Y-Net model aims to learn decoder network from scratch while fine tuning
encoder networks with different learning rates. Our method is conceptually simple, relying
on the pretrained VGG network [17] as one of the encoders and a matched decoder network
with the novel introduction of sum-skip-concatenation based connections to allow a much
deeper network architecture for a more accurate segmentation. The key difference with the
existing models is that we introduced a pre-trained encoder network that is augmented with
untrained mirrored network and a decoder network that uses discriminative cost function to
localize and detect polyps.

Our main contributions are: (1) A novel encoder-decoder network that uses a pretrained
model for one of the encoders with mirrored untrained network and a decoder that is trained
from scratch, making it more practical to train for polyp detection with limited amount of
data. (2) A sum-skip-concatenation connection to a decoder network that allows re-use
of pretrained encoder network weights. (3) Qualitative and quantitative experiments on
MICCAI 2015 challenge on polyp detection [4][3][18] and comparison with state-of-the-
art works [20], show that our method outperforms in polyp detection with 7.3% F1-score
and 13% recall improvement.

2 Previous Work
There is a large literature dedicated to the topic of deep learning for image segmentation and
detection. Our review here is brief due to space limitations, and is intended to highlight the
broad approaches of existing polyp detection algorithms and to provide appropriate back-
ground for our work. For a current state-of-the-art and thorough review of deep learning
for image segmentation and detection, please refer to [7]. Mainly for polyp detection, two

Citation
Citation
{Bonnington and Rutter} 2016

Citation
Citation
{Tajbakhsh, Gurudu, and Liang} 2016

Citation
Citation
{Bernal, S{á}nchez, Fern{á}ndez-Esparrach, Gil, Rodr{í}guez, and Vilari{ñ}o} 2015

Citation
Citation
{Angermann, Histace, and Romain} 2016

Citation
Citation
{Tajbakhsh, Gurudu, and Liang} 2016

Citation
Citation
{Bernal, S{á}nchez, Fern{á}ndez-Esparrach, Gil, Rodr{í}guez, and Vilari{ñ}o} 2015

Citation
Citation
{Bernal, Tajkbaksh, S{á}nchez, Matuszewski, Chen, Yu, Angermann, Romain, Rustad, Balasingham, etprotect unhbox voidb@x penalty @M  {}al.} 2017

Citation
Citation
{Yu, Chen, Dou, Qin, and Heng} 2017

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Simonyan and Zisserman} 2014

Citation
Citation
{Bernal, Tajkbaksh, S{á}nchez, Matuszewski, Chen, Yu, Angermann, Romain, Rustad, Balasingham, etprotect unhbox voidb@x penalty @M  {}al.} 2017

Citation
Citation
{Bernal, S{á}nchez, Fern{á}ndez-Esparrach, Gil, Rodr{í}guez, and Vilari{ñ}o} 2015

Citation
Citation
{Tajbakhsh, Gurudu, and Liang} 2015

Citation
Citation
{Yu, Chen, Dou, Qin, and Heng} 2017

Citation
Citation
{Garcia-Garcia, Orts-Escolano, Oprea, Villena-Martinez, and Garcia-Rodriguez} 2017



Y-NET: A DEEP CONVOLUTIONAL NEURAL NETWORK TO POLYP DETECTION 3

approaches are seen in literature: hand-crafted features with classifiers and deep-learning.
Hand-crafted features: CVC-CLINIC [3] proposed polyp localization algorithm by mod-
eling the appearance of the polyps. Even though there are flat surface polyps but they as-
sume all the polyps have protruding surfaces. Consequently, detection of the polyp is done
through intensity valleys detection. They introduce a pre-processing step which helps to fil-
ter out other valley-rich structures like blood vessels. Similarly, Silva et al. [15] introduced
a method which is influenced by the psycho-visual methodology of clinicians. Initially ge-
ometric features of polyps are exploited to get a region of interest (ROI) through the Hough
transform. In the 2nd stage, texture features are used in an ad-hoc boosting-based classifier
to filter out the ROI which does not contain any polyps. Generally, handcrafted features pro-
vide less correct detections and significantly more false alarms [4].
Deep learning approach: Different methods based on deep learning models are proposed
[4][5][18][20]. Tajbakhsh et al. [18] came up with a two level approach for automatic polyp
detection. Initially, geometric features like shape and size of polyps are exploited to get a set
of candidate regions of having polyps. In the 2nd level, an ensemble of CNN are used for
the classification. The output of the CNNs are averaged to get a probabilistic map for the ex-
istence of polyps in the frame. Yu et al. [20] proposed offline and online three-dimensional
deep learning integration framework. With their approach they used online and offline 3-D
representation learning to reduce the number of false positives and further improve the dis-
crimination capability of the network for a specific video. Other teams on the MICCAI 2015
challenge [4] such as CUMED used VGG type architecture with down-sampling path and up-
sampling path with auxiliary classifiers to alleviate the problem of vanishing gradients and
encourage the backpropagation of gradient flow. Similarly, OUS used pretrained AlexNet
model and CaffeNet, modifying the input size to 96 x 96 and applying sliding window on
three scale of the original input image.

Our proposed Y-Net method is also based on deep learning model and is inspired by U-
Net [14], a fully convolutional network. They used excessive data augmentation by applying
elastic deformations to the available training images. However, our method explores multi-
ple encoders or an ensemble of encoders with and without pre-trained network and learn a
decoder network and without extensive data augmentation.

3 Methodology

Our overall approach is based on using robust pre-trained and un-trained encoder networks.
The framework (illustrated in Fig. 2) consists of two fully convolution encoder networks
which are connected to a single decoder network. The main goal for having two encoders
network is to address the performance loss due to domain-shift from pre-trained network
(natural images) to testing (polyp data), leading to degradation in performance. For exam-
ple, a pre-trained models trained on natural images do not generalize well when applied to
medical images. It is assumed that fine-tuning a pre-trained network works the best when
the source and target tasks have high degree of similarity. Therefore, our approach focuses
using the pre-trained model features optimally by slow fine-tuning the pre-trained network
and aggressive learning on the second encoder for a better generalization on the test set. In
the next sub-sections, we describe each of the network components, and then the losses used
to train the network.
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Figure 1: Appearance variability of polyps: Polyps vary in their shape, size and location
within the large intestine. They may also have bleeding and abnormal patterns on surface.

3.1 Network Architecture

The architecture of our model is shown in Fig. 2. It consists of two contracting paths on
the left, i.e. encoders, and expanding path to the right, i.e. a decoder, that matches the input
dimension. The decoder outputs a binary mask segmentation of the polyp on the last layer.
Encoder one: It follows the typical architecture of VGG19 network [17], which has been
widely used as the base network in many vision applications. This encoder uses a pre-trained
weights of VGG19 trained on ImageNet dataset. The last fully connected layer of the net-
work that was trained on 1000 ImageNet classes is truncated. Usage of a pre-trained model
makes training easier and generalizes better in that, the pre-trained model already has learned
features that are relevant to our own classification problems such as edges, curves and etc.
Encoder two: It follows the same VGG19 network architecture without the fully con-
nected layer. The same input image is given to both encoders. It has 16 convolutional layers
with 3× 3 convolutions and 2× 2 max-pooling layer. The weights of the network are ini-
tialized using Xavier normal initializer [8]. Moreover, it uses SELU activation function [11]
to improve the back propagation as well as mitigates the vanishing and exploding gradients
problem [13].
Decoder: The decoder network consists of five upsampling blocks and one final convolu-
tion block with a filter size of 1×1. Each upsampling block has the structure of Upsampling-
concatenation followed by three blocks of CONV-SELU-BatchNorm(BN), except for the fi-
nal layer which uses a 1×1 convolution with sigmoid for generating the final output mask.
Compared with the other encoder-decoder architectures such as U-Net [14], our decoder is
different in: (1) The decoder is not architecturally symmetric with the encoders. (2) The
decoder is much deeper than the encoder. This design is due to the fact that with the limited
polyp training data, a deeper decoder network would learn features from each scale of the
encoder inputs that are concatenated with the same-scale decoder layer.
Sum-skip-concatenation: This can be generalized for any number of encoders as follows.
Let i ∈ N;1 ≤ i ≤ d be the index for depth of an encoder network k and X is a convolution
feature layer. Hence, X i, j

k , represent the jth index of convolution X at depth i. The values
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Encoder one

Encoder two

Decoder

Pre-trained VGG19

Conv Sum Fully Connected Max-pooling Up-sampling Concat-Conv

Figure 2: Y-Net: proposed architecture. The top row shows VGG19 network pre-trained on
ImageNet dataset with 1000 classes such as cars, tiger and etc. The weights are transfered to
encoder one network as shown above. Given an input image, it is fed to both encoders. The
weights of last convolution at each depth of the encoder are summed and concatenated to the
same spatial depth of the decoder. The output of the decoder is a binary label for foreground
(polyp) and background (non-polyp).

of i and j depends on the specific architecture of the encoder network. Let U(·) be up sam-
pling operation. For VGG19 encoder network the jth convolution in ith depth of kth encoder
network X i, j

k , the response of encoder convolution at depth X i is estimated as follows:

X i =
2

∑
k=1

X i, j
k , j = 2, i≤ 1≤ 2, j = 4, i≤ 3≤ 5 (1)

For each depth of the decoder, the first feature input is computed by concatenating up-
sampled U(d − 1) response of the decoder with the summed output of the encoder con-
volution feature X i using (Eq. (1)). This connection has many advantages for training: (1)
It can combine easily a pre-trained and un-trained network (Eq. (1)) with skip connection to
a decoder. (2) by using different learning rate for both encoders, the un-trained encoder is
trained aggressively without losing the learned pre-trained weights in training the decoder.

3.2 Model Learning and Implementation
Given the network architecture outlined above with one of the encoder pre-loaded with pre-
trained VGG19 weights, we explain next the optimization objectives and training strategy.
Loss function: The output layer in the decoder consists of a single plane for foreground
detected polyp. We applied convolution with sigmoid activation to form the loss. Let p and
g be the set of predicted and ground truth binary labels, respectively. The weighted binary
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cross-entropy and dice coefficient loss between two binary images is defined as:

L(p,g) =− 1
N

N

∑
i=1

(
λ

2
·gi · log pi

)
+

(
1− 2∑

N
i=1(gi · pi)+ ε

∑
N
i=1(pi)+∑

N
i=1(gi)+ ε

)
(2)

where λ and ε are false negatives (FN) penalty and smoothing factor, respectively. In order
to penalize FN more than false positives (FP) in training our network for highly imbalanced
data, the first term in Eq. (2) penalizes FN and the second term weighs FPs and FNs (pre-
cision and recall) equally. In other words, the second term is the same as the negative of
F1-score. This is to avoid miss detection of polyps, as it is more critical to miss a polyp than
giving a FP. Hence, the summed loss function gives a good balance between FN and FP.
Learning rates: Since the pre-trained encoder weights are initialized with VGG19, they
are good, compared to randomly initialized weights, in extracting basic image features such
as edges and curves. Therefore, it would be beneficial while training not to distort them too
much. Hence, we propose encoder specific adaptive learning rates. The parameter update
equation for RMSProp (Root Mean Square Propagation) gradient descent becomes

θt+1 = θt −
c ·η√

E[g2]+ ε
·gt (3)

where c = 0.01 for pre-trained encoder and c = 1 for encoder two and decoder, θ is a model
parameter with a learning rate η and E[g2] is the running average of squared gradients. In
this way, encoder two is learned aggressively while fine-tunning the pre-trained encoder.

4 Experiments
Dataset: Experiments are conducted on the ASU-Mayo clinic polyp database [19] of MIC-
CAI 2015 Challenge on polyp detection. The dataset consists of 20 and 18 short segment
colonoscopy videos for training and testing with pixel level annotated polyp masks in each
frames respectively. The dataset contains colonscopy videos taken under variations in pro-
cedures (i.e. a careful colon examination while others show a fast colon inspection), has
maximum variations in colonoscopy findings such as polyp variations, different resolutions,
and existence of biopsy instruments. Among 20 training videos, ten videos have polyps in-
side and the other ten videos have no polyp. There are total 4278 frames with polyps in the
training set and 4300 frames in test set.
Data augmentation: To increase robustness and reduce overfitting on our model, we in-
crease the amount of training data. First, frames with polyp are doubled pre-training by
applying random rotation (10◦ to 350◦), zoom (1 to 1.3), translation in x,y (-10 to 10) and
shear (-25 to 25) followed by centering the polyp and cropping padded regions. Second,
during training, for each frame with polyp, random cropping of the non-polyp region as well
as perspective transform is applied with probability of 0.3 and 0.4 with random horizontal
and vertical flip respectively. We also tried applying contrast enhancement methods such as
CLAHE (Contrast-limited adaptive histogram equalization) [21] and gamma correction, but
that did not improve the detection accuracy.
Implementation Details: Our model is implemented on Tensorflow and Keras library with
a single NVIDIA GeForce GTX 1080 GPU. Due to the different image sizes in the dataset,
we first crop large boundary margins and resize all images into fixed dimensions with spatial
size of 224× 224 before feeding to both encoders and finally normalized to [0,1]. We use
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Figure 3: Sample detection result on ASU-MAYO test dataset. The images are chosen to
show variations of the polyp appearance and performance of our approach. The last row
shows failure cases. The first three images show FP and the last three show FN.

custom RMSProp (Eq. (3)) as the optimizer with batch size 3 and learning rate η set to
0.0001. We monitor dice coefficient and use early-stop criteria on the validation set error.
Evaluation Metrics: We evaluate the effectiveness of our model using recall and precision
rate. If recall or true positive rate is low, then the model will miss finding polyps which can
lead to late stage diagnosis for colorectal cancer. If precision is low, then it will add further
examination and work for the gastroenterologist. Moreover, negative classes out number the
positives with large margin, i.e. there are more frames without polyp than with polyp [2].
Hence, we employed F1-score and F2-score as they give a balance between missed polyps
and false alarms. In order to calculate F1-score and F2-score we use the following equations:

F1 =
2PR

P+R
,F2 =

5PR
4P+R

and P =
NT P

NT P +NFP
,R =

NT P

NT P +NFN
, (4)

where NT P and NT N are the number of true positives and negative and NFP and NFN are the
number of false positive and negative, respectively. The detection is considered to be correct
when the intersection over union (IoU) between detection box P and ground-truth bounding
box G is greater than zero, otherwise the detection box is assumed as a false positive. Each
pixel in the detection mask is considered as true detection if is above 0.9. IoU is formulated
as:

IoU =
P ·G

∑P+∑G+ ε
∗100% (5)
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Table 1: Comparison of different polyp detection methods on ASU-MAYO dataset. The
result for PLS and OUS are published in [4]. It can be seen that Y-Net has the lowest number
of FN, and highest number of TP.

Method TP FP FN Prec[%] Rec[%] F1[%] F2[%]
PLS 1594 10103 2719 13.6 36.9 19.9 27.5

CVC-CLINIC[3] 1578 3456 2735 31.3 36.6 33.8 35.4
OUS 2222 229 2091 90.6 51.5 65.7 56.4

ASU[19] 2636 184 1677 93.5 61.1 73.9 65.7
CUMED 3081 769 1232 80.0 71.4 75.5 73.0

Fusion[20] 3062 414 1251 88.1 71.0 78.6 73.9
Y-Net(Ours) 3582 513 662 87.4 84.4 85.9 85.0

4.1 Results

We compare the proposed method with several methods from MICCAI 2015 challenge on
polyp detection [4] and with the recent work [20]. First, we show that the performance of
our model is superior comparing to these methods considering F1-score, F2-score, and recall
performance metrics. Then we present various approaches to cast insight on polyp detection
and limitation of our method.
Comparison with the state-of-the-art: We compare Y-Net method with the state-of-
the-art methods listed in Table 1. Polyp localize and spot team (PLS) on MICCAI 2015
challenge used a global hand-crafted image features followed by approximation of polyps
with ellipses. CVC-CLINIC [3] directly models polyps with shape descriptors. Both PLS
and CVC-CLINIC[3] use hand-crafted features followed by a classifier. ASU [19] uses both
hand-crafted features for estimating edge map followed by ensemble of CNN for final polyp
localization. The rest of the methods are based on deep learning approaches, where OUS
uses pre-trained AlexNet and CUMED proposed custom CNN for segmentation. The last
method we compared with, Fusion [20] uses 3D convolution with offline and online learning.
Results in Table 1 demonstrate that our proposed method is superior to the other reference
methods. The following observations can be made: (1) It is also interesting to observe that
hand-crafted features have higher false positive rate than deep learning or hybrid approaches.
We suspect this is because the polyps have varying shapes and appearance making it difficult
for hand-crafting feature descriptor. (2) Our proposed method achieves the best performance
in terms of F1-score, F2-score, and recall providing the maximum number of true detections
and the minimum number false detections. (3) Our result suggests that hybrid fine tuning a
pre-trained network and training from scratch a mirrored network gives a better performance
when the domain of data are different such as in natural vs. medical images. Sample visual
results are shown in Fig. 3.
Detection latency: One of the challenges in clinical colonoscopy when performing fast
inspection is that some of the polyps can appear in a few frames and could be missed in the
subsequent video. Therefore, it is also important to measure how quickly the first instance of
the polyp can be detected by automated detection methods. Detection latency is the number
of frames for our model to detect a polyp from the first appearance of a polyp in the scene,
∆T = t2− t1. The detection latency of our method for all test videos containing polyp is
shown in Table 2. It is important to mention that for all videos, we measure the latency from
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Table 2: Detection latency for videos containing only polyps on ASU-MAYO test dataset.

Detection Latency
∆T 8 0 0 18 0 0 0 0 0

Test video Vid5 Vid6 Vid7 Vid8 Vid9 Vid10 Vid11 Vid12 Vid13

Table 3: Baseline comparison of pre-trained encoders: All the models are trained under the
same data augmentation and common parameter settings

Method Prec[%] Rec[%] F1[%] F2[%]
U-Net(Trained from scratch, baseline) 90.8 39.2 54.7 44.2

U-Net(Pre-trained encoder VGG19, single encoder) 96.2 68.2 79.8 72.4
Y-Net(Ours) 87.4 84.4 85.9 85.0

first appearance of polyp on ground truth data.

4.2 Further insights and limitations
We further compare our method with pre-trained VGG19 single encoder with skip connec-
tion. In this case, the architecture is similar to U-Net except the encoder network of U-Net is
replaced with a pre-trained VGG19 model. We trained the model together with the decoder.
Moreover, we trained U-Net from scratch as baseline in order to analyze the effect of having
a pre-trained network as an encoder. The result is summarized in Table 3. As it can be seen,
using a pre-trained network as encoder part of U-Net improves the detection accuracy. Sum-
ming both pre-trained and un-trained encoder as proposed in this work results in the best
F1 and F2-score for polyp detection. A unique characteristic of our method, compared with
U-Net trained from scratch or with pre-trained encoder, is that it has a better compromise
between recall and precision.

The last row of Fig. 3, shows some of false positives and false negatives of the proposed
method. The sample frames are challenging in that there is a significant view point variation,
shape, lighting and specular reflection. We have considered accounting for variation of light
as well as contrast enhancement of the images as a preprocessing step. However, there is no
significant difference in the accuracy.

Finally, it is important to note that, the proposed multiple(ensemble) of encoders can
be generalized and extended to other architectures such as ResNet [10]. This can be done
as discussed in section 3, by replacing the encoders with pre-trained and untrained ResNet
network while keeping the decoder network shown in Fig. 2.

5 Conclusion
We address polyp detection problem in colonoscopy videos by proposing a new deep encoder-
decoder approach. Our method relies on two-encoder networks that use a pre-trained VGG19
weights in the first encoder and random initialized weights in the latter. The two encoders
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are integrated with a novel sum-skip-concatenation operation. Moreover, we propose to use
encoder based learning rate to efficiently use a pre-trained model. The approach is flexi-
ble in that, the pre-trained encoder used in this work can be replaced with other pre-trained
models such as ResNet or similar. The proposed fusion of pre-trained and untrained en-
coder network with sum-skip connection to decoder provides a new strategy to fill the gap
between the large variation of testing data and the limited training data, which is a common
challenge when employing supervised learning methods in medical image analysis tasks. Fi-
nally, experiment results on ASU-Mayo Clinic polyp database show that with the proposed
multi-encoder framework, we achieved the best performance on F1 and F2 score metrics.

References
[1] Quentin Angermann, Aymeric Histace, and Olivier Romain. Active learning for real

time detection of polyps in videocolonoscopy. Procedia Computer Science, 90:182–
187, 2016.

[2] ChiChi Berhane and David Denning. Incidental finding of colorectal cancer in screen-
ing colonoscopy and its cost effectiveness. The American Surgeon, 75(8):699–704,
2009.

[3] Jorge Bernal, F Javier Sánchez, Gloria Fernández-Esparrach, Debora Gil, Cristina Ro-
dríguez, and Fernando Vilariño. Wm-dova maps for accurate polyp highlighting in
colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical
Imaging and Graphics, 43:99–111, 2015.

[4] Jorge Bernal, Nima Tajkbaksh, Francisco Javier Sánchez, Bogdan J Matuszewski, Hao
Chen, Lequan Yu, Quentin Angermann, Olivier Romain, Bjørn Rustad, Ilangko Balas-
ingham, et al. comparative validation of polyp detection methods in video colonoscopy:
results from the miccai 2015 endoscopic vision challenge. IEEE transactions on med-
ical imaging, 36(6):1231–1249, 2017.

[5] Mustain Billah, Sajjad Waheed, and Mohammad Motiur Rahman. An automatic gas-
trointestinal polyp detection system in video endoscopy using fusion of color wavelet
and convolutional neural network features. International journal of biomedical imag-
ing, 1, 2017.

[6] Stewart N Bonnington and Matthew D Rutter. Surveillance of colonic polyps: are we
getting it right? World journal of gastroenterology, 22(6):1925, 2016.

[7] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez,
and Jose Garcia-Rodriguez. A review on deep learning techniques applied to semantic
segmentation. arXiv preprint arXiv:1704.06857, 2017.

[8] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256, 2010.

[9] Fatima A Haggar and Robin P Boushey. Colorectal cancer epidemiology: incidence,
mortality, survival, and risk factors. Clinics in colon and rectal surgery, 22(4):191,
2009.



Y-NET: A DEEP CONVOLUTIONAL NEURAL NETWORK TO POLYP DETECTION 11

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[11] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in Neural Information Processing Systems,
pages 972–981, 2017.

[12] Reinier GS Meester, Chyke A Doubeni, Ann G Zauber, S Luuk Goede, Theodore R
Levin, Douglas A Corley, Ahmedin Jemal, and Iris Lansdorp-Vogelaar. Public health
impact of achieving 80% colorectal cancer screening rates in the united states by 2018.
Cancer, 121(13):2281–2285, 2015.

[13] George Philipp, Dawn Song, and Jaime G. Carbonell. Gradients explode - deep net-
works are shallow - resnet explained. CoRR, abs/1712.05577, 2017. URL http:
//arxiv.org/abs/1712.05577.

[14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[15] Juan Silva, Aymeric Histace, Olivier Romain, Xavier Dray, and Bertrand Granado.
Toward embedded detection of polyps in wce images for early diagnosis of colorectal
cancer. International Journal of Computer Assisted Radiology and Surgery, 9(2):283–
293, 2014.

[16] Karen Simon. Colorectal cancer development and advances in screening. Clinical
interventions in aging, 11:967, 2016.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[18] Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming Liang. Automatic polyp detec-
tion in colonoscopy videos using an ensemble of convolutional neural networks. In
Biomedical Imaging (ISBI), 2015 IEEE 12th International Symposium on, pages 79–
83. IEEE, 2015.

[19] Nima Tajbakhsh, Suryakanth R Gurudu, and Jianming Liang. Automated polyp detec-
tion in colonoscopy videos using shape and context information. IEEE transactions on
medical imaging, 35(2):630–644, 2016.

[20] Lequan Yu, Hao Chen, Qi Dou, Jing Qin, and Pheng Ann Heng. Integrating online and
offline three-dimensional deep learning for automated polyp detection in colonoscopy
videos. IEEE journal of biomedical and health informatics, 21(1):65–75, 2017.

[21] Karel Zuiderveld. Contrast limited adaptive histogram equalization. Graphics gems,
pages 474–485, 1994.

http://arxiv.org/abs/1712.05577
http://arxiv.org/abs/1712.05577

