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Abstract
We address human action recognition from multi-modal video data involving articulated
pose and RGB frames and propose a two-stream approach. The pose stream is processed
with a convolutional model taking as input a 3D tensor holding data from a sub-sequence.
A specific joint ordering, which respects the topology of the human body, ensures that
different convolutional layers correspond to meaningful levels of abstraction. The raw
RGB stream is handled by a spatio-temporal soft-attention mechanism conditioned on
features from the pose network. An LSTM network receives input from a set of image
locations at each instant. A trainable glimpse sensor extracts features on a set of pre-
defined locations specified by the pose stream, namely the 4 hands of the two people
involved in the activity. Appearance features give important cues on hand motion and
on objects held in each hand. We show that it is of high interest to shift the attention to
different hands at different time steps depending on the activity itself. Finally a temporal
attention mechanism learns how to fuse LSTM features over time. State-of-the-art results
are achieved on the largest dataset for human activity recognition, namely NTU-RGB+D.

1 Introduction
We address human activity recognition in settings where articulated pose is available, for in-
stance when input is captured from consumer depth cameras. As complementary information
we also use the RGB stream, which provides rich contextual cues on human activities, for in-
stance on the objects held or interacted with. Recognizing human actions accurately remains
a challenging task, compared to other problems in computer vision and machine learning.
We argue that this is in part due to the lack of large datasets. While large scale datasets
have been available for a while for object recognition (ILSVRC [30]) and for general video
classification (Sports-1M [15] and lately Youtube8M [1]), the more time-consuming acqui-
sition process for videos showing close range human activities limited datasets of this type
to several hundreds or a few thousand videos. As a consequence, the best performing meth-
ods on this kind of datasets are either based on handcrafted features or suspected to overfit
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on the small datasets after years the community spent on tuning methods. The recent intro-
duction of datasets like NTU-RGB-D [31] (∼ 57 000 videos) will hopefully lead to better
automatically learned representations.

One of the challenges is the high amount of information in videos. Downsampling is an
obvious choice, but using the full resolution at certain positions may help extracting impor-
tant cues on small or far away objects (or people). In this regard, models of visual attention
[7, 27, 33] (see section 2 for a full discussion) have drawn considerable interest recently.
Capable of focusing their attention to specific important points, parameters are not wasted
on input which is considered of low relevance to the task at hand.

We propose a method for human activity recognition, which addresses this problem by
using articulated pose and raw RGB input in a novel way: our method attends to some parts
of the RGB stream given information from the pose stream. In our approach, pose has three
complementary roles: i) it is used as an input stream in its own right, providing important
cues for the discrimination of activity classes; ii) raw pose (joints) serves as an input for the
model handling the RGB stream, selecting positions where glimpses are taken in the image;
iii) features learned on pose serve as an input to the soft-attention mechanism, which weights
each glimpse output according to an estimated importance w.r.t. the task at hand, in contrast
to unconstrained soft-attention on the RGB video [33].

The RGB stream model is recurrent (an LSTM), whereas our pose representation is
learned using a convolutional neural network taking as input a sub-sequence of the video.
The benefits are twofold: a pose representation over a large temporal range allows the atten-
tion model to assign an estimated importance for each glimpse point and each time instant
taking into account knowledge of this temporal range. As an example, the pose stream might
indicate that the person’s hand moves into the direction of a different person, which still
leaves several possible choices for the activity class. These choices might require attention
to be moved to this hand at a specific instant to verify what kind of object is held, which
itself may help to discriminate activities.

The contributions of our work are as follows:
• We propose a spatial attention mechanism on RGB videos which is conditioned on

deep pose features from the full sub-sequence.
• We propose a temporal attention mechanism which learns how to pool features output

from the recurrent (LSTM) network over time in an adaptive way.
• As an additional contribution, we experimentally show that knowledge transfer from a

large activity dataset like NTU (57’000 activities) to smaller datasets like SBU Inter-
action Dataset 3D (300 videos) or MSR Daily Activity (300 videos) is possible.

The supplementary material contains additional information about our method as well as an
explainer video with visualization of our approach at test time.

2 Related Work
Activities, gestures and multimodal data — Recent gesture/action recognition meth-
ods dealing with several modalities typically process 2D+T RGB and/or depth data as 3D.
Sequences of frames are stacked into volumes and fed into convolutional layers at first
stages [3, 14, 28, 29, 41]. When additional pose data is available, the 3D joint positions are
typically fed into a separate network. Preprocessing pose is reported to improve performance
in some situations, e.g. augmenting coordinates with velocities and accelerations [47]. Pose
normalization (bone lengths and view point normalization) has been reported to help in cer-
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tain situations [29]. Fusing pose and raw video modalities is traditionally done as late fu-
sion [28], or early through fusion layers [41]. We believe that information extracted from
different modalities are complementary but at the same time redundant. Our approach ad-
dresses this issue by using learned features from one modality (pose) to attend to some part
of another modality (RGB). Hence it can attend to some parts of the RGB stream which are
giving discriminative features that can be detected from the pose data.

Architectures for pose data — Recent fined-grained activity recognition methods from
pose data are based on recurrent neural networks and/or convolutional neural networks. Part-
aware LSTMs [31] separate the memory cells of LSTM networks [11] into part-based sub-
cells and let the network learn long-term representations individually for each part, fusing
the parts for output. Similarly, Du et al [8] use bi-directional LSTM layers which fit anatom-
ical hierarchy. Skeletons are split into anatomically-relevant parts (legs, arms, torso, etc), so
that each subnetwork in the first layers gets specialized on one part. Features are progres-
sively merged as they pass through layers. Multi-dimensional LSTMs [10] are models with
multiple recurrences from different dimensions. Originally introduced for images, they also
have been applied to activity recognition from pose sequences [22]. One dimension is time,
the second is a topological traversal of the joints in a bidirectional depth-first search, which
preserves the neighbourhood relationships in the graph. On the other side convolutional ar-
chitectures are used from pose data. Convolutional neural networks et al. [12, 16, 39] are
also used to handle pose sequences. Such approaches require a 3D tensor as input. To satisfy
this condition they encode the sequence of pose as a trajectory [16] or into a RGB-like image
for benefiting of a Imagenet initialization of the weights [12]. Our solution is close to [39],
which stacks the 3D coordinates into a Tensor. However, we follow a topological ordering
to extract a better representation of the pose sequence.

Attention mechanisms — Human perception focuses selectively on parts of the scene
to acquire information at specific places and times. In machine learning, this kind of pro-
cesses is referred to as attention mechanism [13], and has drawn increasing interest when
dealing with languages [5, 17], images [20] and other data. Integrating attention can poten-
tially lead to improved overall accuracy, as the system can focus on parts of the data, which
are most relevant to the task. Attention mechanisms were gradually categorized into two
classes. Hard attention takes hard decisions when choosing parts of the input data. This
leads to stochastic algorithms, which cannot be easily learned through gradient descent and
back-propagation. In a seminal paper, Mnih et al [27] proposed visual hard-attention for im-
age classification built around a recurrent network, which implements the policy of a virtual
agent. A reinforcement learning problem is thus solved during learning [40]. The model
selects the next location to focus on, based on past information. Similar approaches have
been applied for tackling multiple object recognition [2], generating saliency maps [19] and
action detection [43]. On the other hand, soft attention takes the entire input into account,
weighting each part of the observations dynamically. The objective function is usually differ-
entiable, making gradient-based optimization possible. Soft attention was used for various
applications such as neural machine translation [5, 17] or image captioning [42]. Recently,
soft attention was proposed for image [7] and video understanding [6, 33, 34, 44], with
spatial, temporal and spatio-temporal variants. Sharma et al [33] proposed a recurrent mech-
anism for action recognition from RGB data, which integrates convolutional features from
different parts of a space-time volume. Song et al [34] propose separate spatial and tempo-
ral attention networks for action recognition from pose. At each frame, the spatial attention
model gives more importance to the joints most relevant to the current action, whereas the
temporal model selects frames. Baradel et al. [6] propose to attend to most relevant hands
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Figure 1: The spatial attention mechanism

in the RGB space given the articulated pose. Our approach is closely related to [6], however
our attention mechanism on the RGB space is conditioned on end-to-end learned deep fea-
tures from the pose modality and not only handcrafted pose features. Our pose features need
to be discriminative enough for classifying the action and at the same time carry enough
information for attending relevant hands.

3 Proposed Model
A single or multi-person activity is described by a sequence of two modalities: the set of
RGB input images I = {It}, the set of articulated human poses x={xt} and we wish to predict
the activity class y. We do not use raw depth data in our method, although the extension
would be straightforward. Both signals are indexed by time t. Poses xt are defined by 3D
coordinates of K joints per subject, for instance delivered by the middleware of a depth
camera. In our case we restrict our application to activities involving one or two people
and their interactions. We propose a two-stream model, which classifies activity sequences
by extracting features from articulated human poses and RGB frames jointly. Our main
contribution comes from the fact that we use features learned from the pose stream to attend
to some parts of the RGB stream where all the features are end-to-end learnable.

3.1 Spatial Attention on RGB videos
The sequence of full-HD RGB input images {It} is arguably not compact enough to easily
extract an efficient global representation with a feed-forward neural network. We opt for a
recurrent solution, where, at each time instant, glimpses on the seen input is selected using
an attention mechanism.

In some aspects similar to [27], we define a trainable bandwidth limited sensor. However,
in contrast to [27], and in the lines of [6], our attention process is conditional to the pose input
xt , thus limited to a set of N discrete attention points. In our experiments, we selected N=4
attention points, which are the 4 hand joints of the two people involved in the interaction.
We choose hands as attention points because humans use their hands for performing most
of their daily actions. Our method can be extended to more attention points. The goal is
to extract additional information about hand shape and about manipulated objects. Many
activities such as Reading, Writing, Eating, Drinking are similar in motion but can be highly
correlated to manipulated objects. As the glimpse location is not output by the network,
this results in a differentiable soft-attention mechanism, which can be trained by gradient
descent.
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The glimpse representation for a given attention point i is a convolutional network fg
with parameters θg, taking as inputs a crop taken from image It at the position of joint i from
the set xt :

vt,:,i = fg(crop(It ,xt , i);θg) i ∈ {1, . . . ,N} (1)

Here and in the rest of the paper, subscripts of mappings fg and their parameters θg choose a
specific mapping, they are not indices. Subscripts of variables and tensors are indices. vt,:,i is
a (column) feature vector for time t and hand i. For a given time t, we stack the vectors into
a matrix V t=[vt, j,i]i, j, where i is the index over hand joints and j is the index over features.
V t is a 2D tensor, since t is fixed for a given instant.

A recurrent model receives inputs from the glimpse sensor sequentially and models the
information from the seen sequence with a componential hidden state ht :

ht = fh(ht−1, ṽt ;θh) (2)

We chose a fully gated LSTM model including input, forget and output gates and a cell state.
To keep the notation simple, we omitted the gates and the cell state from the equations. The
input to the LSTM network is the context vector ṽt , defined further below, which corresponds
to an integration of the different attention points (hands) in V t .

An obvious choice of integration are simple functions like sum and concatenation. While
the former tends to squash feature dynamics by pooling strong feature activations in one hand
with average or low activations in other hands, the latter leads to high capacity models with
low generalization. The soft-attention mechanism dynamically weights the integration pro-
cess through a distribution pt , determining how much attention hand i needs with a calculated
weight pt,i. In contrast to unconstrained soft-attention mechanisms on RGB video [33], our
attention distributions not only depend on the LSTM state h, but also on the pose features s
(explained in section 3.3) extracted from the sub-sequence, through a learned mapping with
parameters θp:

pt = fp(ht−1,s;θp) (3)

Attention distribution pt and features V t are integrated through a linear combination as

ṽt =V t pt , (4)

which is input to the LSTM network at time t (see eq. (2)). The conditioning on the pose
features in eq. (3) is important, as it provides valuable context derived from motion. Note that
the recurrent model itself (eq. (2)) is not conditional [26], this would significantly increase
the amount of parameters.

3.2 Temporal Attention
Recurrent models can provide predictions for each time step t. Most current work in se-
quence classification proceeds by temporal pooling of these predictions, e.g. through a sum
or average [33]. We show that it can be important to perform this pooling in an adaptive
way. In recent work on dense activity labelling, temporal attention for dynamical pooling
of LSTM logits has been proposed [44]. In contrast, we perform temporal pooling directly
at feature level. In particular, at each instant t, features are calculated by a learned mapping
given the current hidden state:

u:,t = fu(ht ;θu) (5)
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Figure 2: Spatial attention over time: putting an object into the pocket of someone will
make the attention shift to this hand.
The features for all instants t of the sub-sequence are stacked into a matrix U={u j,t}, where
j is the index over the feature dimension. A temporal attention distribution p′ is predicted
through a learned mapping. To be efficient, this mapping should have seen the full sub-
sequence before giving a prediction for an instant t, as giving a low weight to features at
the beginning of a sequence might be caused by the need to give higher weights to features
at the end. In the context of sequence-to-sequence alignment, this has been addressed with
bi-directional recurrent networks [4]. To keep the model simple, we benefit from the fact that
(sub) sequences are of fixed length and that spatial attention information is already available.
We conjecture that (combined with pose) the spatial attention distributions pt over time t are
a good indicator for temporal attention, and stack them into a single vector P, input into the
network predicting temporal attention:

p′ = fp′(P,s;θ
′
p) (6)

This attention is used as weight for adaptive temporal pooling of the features U , i.e. ũ =
U× p′.

3.3 Convolutional pose features
Given the K body joints, we wish to extract features which model i) the temporal behaviour
of the pose(s) and ii) correlations between different joints. An attention mechanism on poses
could have been an option, similar to [34]. We argue that the available pose information
is sufficiently compact to learn a global representation and show that this is efficient. In
our case, attention is performed on RGB conditioned on pose instead, as described earlier.
We also argue for the need to find a hierarchical representation which respects the spatio-
temporal relationships of the data. In the particular case of pose data, joints also have strong
neighbourhood relationships in the human body.

In the lines of [22], we define a topological ordering of the joints in a human body as
a connected cyclic path over joints. The path itself is not Hamiltonian as each node can be
visited multiple times: once during a forward pass over a limb, and once during a backward
pass over the limb back to the joint it is attached to. The double entries in the path are
important, since they ensure that the path preserves neighbourhood relationships.

In [22], a similar path is used to define an order in a multi-dimensional LSTM network. In
contrast, we propose a convolutional model which takes three-dimensional inputs (tensors)
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calculated by concatenating pose vectors over time. In particular, input tensors X are defined
as X={X t, j,k}, where t is the time index, j is the joint & coordinate index, and k is a feature
index: each line corresponds to a time instant; the first three columns correspond to the x, y
and z coordinates of the first joint, followed by the x, y and z coordinate of the second joint,
which is a neighbour of the first etc. The first channel corresponds to raw coordinates, the
second channel corresponds to first derivates of coordinates (velocities), the third channel to
second derivates (accelerations). Poses of two people are stacked into a single tensor along
the second dimension.

We learn a pose network fsk with parameters θsk on this input, resulting in the pose
feature representation s:

s = fsk(X ;θsk) (7)

fsk is implemented as a convolutional neural network alternating convolutions and max-
pooling.

3.4 Stream fusion
Each stream, pose and RGB, leads to its own set of features, with the particularity that pose
features s are input to the attention mechanism for the RGB stream. We first train the pose
stream and then the RGB stream. The final model fuse both streams on logit level. More
sophisticated techniques, which learn fusion [29], do not seem to be necessary.

Our model is similar to [6] in some respects, and here we would like to highlight the main
differences. Baradel et al. [6] draw the spatial attention distribution pt from the augmented
pose which corresponds to handcrafted features of xt . In our approach the spatial attention
is conditioned on ht−1 and s, which can be trained end-to-end, and makes our approach
more data driven. The temporal attention distribution differs in a similar way. We calculate
temporal attention from learned pose features s whereas Baradel et al. [6] use handcrafted
features of the pose. In the experiments, we show that these differences are key design
choices. Finally, we would like to highlight about the nature of the pose features s. They
are extracted and learned by a convolutional architecture while preserving the topological
order of the joints. This is a crucial point which makes s being able to keep information
about the most discriminative joints and timesteps of the full sequence. Since s is an input of
our attention mechanisms, our model can decide to focus on some parts (i.e. hands, hidden
states) of the sequence which can lead to improve the understanding of the full-sequence and
hence enrich the final representation of the video.

Details about the full architecture structure and the training steps can be found in the
supplementary material.

4 Network architectures and Training
Architectures — The pose network fsk consists of 3 convolutional layers of respective sizes
8×3, 8×3, 5×75. Inputs are of size 20×300×3 and feature maps are, respectively, 10×150,
5×75 and 1×1×1024. Max pooling is employed after each convolutional layer, activations
are ReLU. The glimpse sensor fg is implemented as an Inception V3 network [35]. Each
vector vt,:,i corresponds to the last layer before output and is of size 2048. The LSTM net-
work fh has a single recurrent layer with 1024 units. The spatial attention network fp is an
MLP with a single hidden layer of 256 units and sigmoid activation. The temporal atten-
tion network f ′p is an MLP with a single hidden layer of 512 units and sigmoid activation.
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The feature extractor fu is a single linear layer with ReLU activation. The output layers of
both stream representations are linear layers followed by softmax activation. The full model
(without glimpse sensor fg) has 38 millions trainable parameters.

Training — All classification outputs are softmax activated and trained with cross-
entropy loss. The glimpse sensor fg is trained on the ILSVRC 2012 data [30]. The pose
learner is trained discriminatively with an additional linear+softmax layer to predict action
classes. The RGB stream model is trained with pose parameters θsk and glimpse parameters
θg frozen.

Implementation details — Following [31], we cut videos into sub sequences of 20
frames and sample sub-sequences. During training a single sub-sequence is sampled, during
testing we sample 10 sub-sequences and average the logits. We apply a normalization step
on the joint coordinates by translating them to a body centered coordinate system with the
“middle of the spine” joint as the origin. If only one subject is present in a frame, we set the
coordinates of the second subject to zero. We crop sub images of static size on the positions
of the hand joints (50×50 for NTU, 100×100 for SBU and MSR). Cropped images are then
resized to 299×299 and fed into the Inception model.

Training is done using the Adam Optimizer [18] with an initial learning rate of 0.0001.
We use minibatches of size 64 and dropout with a probability of 0.5. Following [31], we
sample 5% of the initial training set as a validation set, which is used for hyper-parameter
optimization and for early stopping. All hyper-parameters have been optimized on the vali-
dation sets of the respective datasets. When transferring knowledge from NTU to SBU, the
target networks were initialized with models pre-trained on NTU. Skeleton definitions are
different and were adapted. All layers were finetuned on the smaller datasets with an initial
learning rate 10 times smaller then the learning rate for pre-training.

Runtime — For a sub-squence of 20 frames, we get the following runtimes for a sin-
gle Titan-X (Maxwell) GPU and an i7-5930 CPU: A full prediction from features takes
1.4ms including pose feature extraction. This does not include RGB pre-processing, which
takes additional 1sec (loading Full-HD video, cropping sub-windows and extracting Incep-
tion features). Classification can thus be done close to real-time. Fully training one model
(w/o Inception) takes ∼4h on a Titan-X GPU. Hyper-parameters have been optimized on a
computing cluster with 12 Titan-X GPUs. The proposed model has been implemented in
Tensorflow.

5 Experiments
The proposed method has been evaluated on three datasets: NTU RGB+D (NTU), SBU
Kinect Interaction (SBU) and MSR Daily Activity (MSR). NTU [31] is the largest dataset
for human activity recognition with 56K videos and 60 different activities. We follow the
cross-subject and cross-view split protocol from [31]. We extensively tested on NTU and we
shows two transfer experiments on smaller datasets SBU and MSR. SBU is an interaction
dataset features with two people with a total of 282 sequences and 8 activities while MSR is
an daily action dataset features with one people with a total of 320 videos and 16 actions. We
follow the standard experimental protocols of [45] and [38] respectively for SBU and MSR.

Details about the implementations can be found in the supplementary material.
Comparisons to the state-of-the-art — We show comparisons of our model against

the state-of-the-art methods in table 1, 5 and table 4 respectively. We achieve state of the art
performance on the NTU dataset with the full model fusing both streams. We also show a
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Methods Pose RGB CS CV Avg

Part-aware LSTM [31] X - 62.9 70.3 66.6
ST-LSTM + TrustG. [22] X - 69.2 77.7 73.5

STA-LSTM [34] X - 73.4 81.2 77.2
GCA-LSTM [23] X - 74.4 82.8 78.6

JTM [39] X - 76.3 81.1 78.7
MTLN [16] X - 79.6 84.8 82.2

VA-LSTM [48] X - 79.4 87.6 83.5
View-invariant [24] X - 80.0 87.2 83.6

DSSCA - SSLM [32] X X 74.9 - -
C3D† [37] - X 63.5 70.3 66.9

Resnet50+LSTM† - X 71.3 80.2 75.8
STA-Hands [6] ◦ X 73.5 80.2 76.9

STA-Hands + DeepGRU [6] X X 82.5 88.6 85.6
Ours (pose only) X - 77.1 84.5 80.8
Ours (RGB only) ◦ X 75.6 80.5 78.1

Ours (pose +RGB) X X 84.8 90.6 87.7

Table 1: Results on the NTU RGB+D dataset
with Cross-Subject (CS) and Cross-View (CV)
settings (accuracies in %); († indicates method
has been re-implemented).

Methods Attention CS CV Avg
Conditional to pose

RGB only - 66.5 72.0 69.3
RGB only X 75.6 80.5 78.1

Multi-modal - 83.9 90.0 87.0
Multi-modal X 84.8 90.6 87.7

Table 2: Results on NTU: conditioning
the attention mechanism on pose (RGB
only, accuracies in %).

Methods CS CV Avg

Random joint order 75.5 83.2 79.4
Topological order w/o double entries 76.2 83.9 80.0

Topological order 77.1 84.5 80.8

Table 3: Results on NTU: pose only, ef-
fect of joint ordering.

Methods Pose RGB Depth Acc.

Raw skeleton [45] X - - 49.7
Joint feature [45] X - - 80.3
Raw skeleton [46] X - - 79.4
Joint feature [46] X - - 86.9

Co-occurence RNN [50] X - - 90.4
STA-LSTM [34] X - - 91.5

ST-LSTM + Trust Gate [22] X - - 93.3
DSPM [21] - X X 93.4

VA-LSTM [48] - X X 97.5

Ours (Pose only) X - - 90.5
Ours (RGB only) ◦ X - 72.0

Ours (Pose + RGB) X X - 94.1

Table 4: Results on SBU Kinect Interaction
dataset (accuracies in %)

Methods Pose RGB Depth Acc.

Action Ensemble [38] X - - 68.0
Efficient Pose-Based [9] X - - 73.1

Moving Pose [47] X - - 73.8
Moving Poselets [36] X - - 74.5

MP [32] X - - 79.4

Depth Fusion [49] - - X 88.8
MMMP [32] X - X 91.3

DL-GSGC [25] X - X 95.0
DSSCA - SSLM [32] - X X 97.5

Ours (Pose only, no finetuning) X - - 72.2
Ours (Pose only) X - - 74.6
Ours (RGB only) ◦ X - 75.3

Ours (Pose + RGB) X X - 90.0

Table 5: Results on MSR Daily Action
dataset (accuracies in %)

good generalization of our model by showing competitive results on SBU and MSR.
We conducted extensive ablation studies to understand the impact of our design choices.
Joint ordering — The joint ordering in the input tensor X has an effect on performance,

as shown in table 3. Following the topological order described in section 3.3 gains >1.6
percentage point on the NTU dataset w.r.t. random joint order, which confirms the interest
of a meaningful hierarchical representation. As anticipated, keeping the redundant double
joint entries in the tensors gives an advantage, although it increases the amount of trainable
parameters. More visualizations can be found in the video.

The effect of the attention mechanism — The attention mechanism on RGB data
has a significant impact in term of performance as shown in table 6. We compare it to
baseline summing (B) or concatenating (C) features. In these cases, hyper-parametres where
optimized for these meta-architectures. The performance margin is particularly high in the
case of the single stream RGB model (methods E and G). In the case of the multi-modal (two-
stream) models, the advantage of attention is still high but not as high as for RGB alone. A
part of the gain of the attention process seems to be complementary to the information in the
pose stream, and it cannot be excluded that in the one stream setting a (small) part of the
pose information is translated into direct cues for discrimination through an innovative (but
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Methods Pose RGB Attention CS CV Avg
Spatial Temporal Pose

A Pose only X - - - - 77.1 84.5 80.8

B RGB only, no attention (sum of features) - X - - - 61.5 65.9 63.7
C RGB only, no attention (concat of features) - X - - - 63.2 67.2 65,2

E RGB only + spatial attention ◦ X X - X 67.4 71.2 69.3
G RGB only + spatio-temporal attention ◦ X X X X 75.6 80.5 78.1

H Multi-modal, no attention (A+B) X X - - - 83.0 88.5 85.3
I Multi-modal, spatial attention (A+E) X X X - X 84.1 90.0 87.1
K Multi-modal, spatio-temporal attention (A+G) X X X X X 84.8 90.6 87.7

Table 6: Results on NTU: effect of attention. ◦means that pose is only used for the attention
mechanism.

admittedly not originally planned) use of the attention mechanism. However, the gain is still
significant, with ∼2.5 percentage points compared to the baseline.

Figure 2 shows an example of the effect of the spatial attention process: during the
activity of Putting an object into the pocket of somebody, the attention shifts to the “putting”
hand at the point where the object is actually put.

Pose-conditioned attention mechanism — Making the spatial attention model condi-
tional to the pose features s is confirmed to be a key design choice, as can be seen in table 2.
In the multi-modal setting, a full point is gained, >12 points in the RGB only case.

Pose: end-to-end features vs handcrafted features — Conditioning the attention on
end-to-end pose features is shown to be an important component of our model. Compared
to [6] which use handcrafted pose features for drawing the attention over the RGB stream
we show a gain of ∼2 points (78.1 vs 76.9 for the RGB stream and 87.7 vs 85.6 for the two-
stream model) as shown in table 1. We argue that the nature of fsk which output the pose
features s is a key design choice. The convolutional architecture of fsk and the topological
joint ordering of its input are important for making sure that s keep enough information about
the most important joints and time instants of the full-sequence. Hence our approach can
focus on the most discriminative attention points on the RGB space and the most important
hidden states of fh to extract a stronger final representation of the video.

Comparison with RGB only methods — There is a clear gap between our approach and
standard methods for action recognition on RGB data such C3D and CNN+LSTM (+21.8 for
C3D and +12.1 for CNN+LSTM) as shown in table 1. These methods need to downsample
the RGB stream to a lower resolution which leads to poor performances for fined-grained
action recognition. Using some parts of the high resolution RGB stream such as done by our
method is important for extracting discriminative features.

6 Conclusion

We propose a general method for dealing with pose and RGB video data for human action
recognition. A convolutional network on pose data processes specifically organized input
tensors. A soft-attention mechanism crops on hand joints and allows the model to collect
relevant features on hand shapes and on manipulated objects. Adaptive temporal pooling fur-
ther increases performance. Our method shows state-of-the-art results on the NTU RGB+D
dataset and competitive performance by performance transfer learning on SBU Interaction
dataset and MSR Daily Activity.
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