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Abstract

Handwritten text recognition has been a ubiquitous research problem in the field
of computer vision. Most existing approaches focus on the recognition of handwritten
words without considering the cursive nature and significant differences in the writing of
individuals. In this paper, we address these problems by leveraging an adaptive context-
aware reinforced agent which learns the actions to determine the scales of context regions
during inference. We formulate our approach in a reinforcement learning framework.
Specifically, we construct the action set with a number of context lengths. Given an
image feature sequence, our model is trained to adaptively choose the optimal context
length according to the observed state. An attention mechanism is then used to selectively
attend the context region. Our model can generalize well from recognizing isolated words
to recognizing individual lines of text while remain low computation overheads. We
conduct extensive experiments on three large-scale handwritten text recognition datasets.
The experimental results show that our proposed model is superior to the state-of-the-art
alternatives.

1 Introduction
Handwritten text recognition (HWR) is commonly used to extract natural languages from
images. It remains an open research problem, in which noisy, real-valued input streams
are annotated with strings of discrete labels, such as letters or words. Handwritten text
recognition presents relevant applications such as bank check reading, mail sorting, and
content preservation of historical documents. Due to the importance of these applications, it
has attracted increasing research attention in recent years.

Despite recent advances in scene text recognition [7, 10, 30, 44, 47], recognizing hand-
written text, due to the cursive nature of handwritten characters and significant differences
in the writing of individuals, remains challenging. Several attempts using convolutional
neural networks (CNNs) [3, 27, 41] have been shown to produce impressively low error
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Figure 1: Two samples from KHATT dataset. The shape of the same character �
H (red) varies

under different surrounding context, while two different words of A
	
K (blue) and 	

à (green)
share a similar shape. Correctly inferring a character depends on its correlated characters
which we denote as local context. We refer to the number of adjacent characters needed to
make an inference as context length.

rates on handwritten word datasets. However, these systems use fixed-size CNNs and fo-
cus on isolated words which are rarely readily available in real world applications. Another
general approach is to use recurrent neural networks (RNNs) associated with connectionist
temporal classification (CTC) [18]. They are capable of recognizing a line of text without
word-level segmentation. Doetsch et al. [15] use a stacked bidirectional long short-term
memory (BLSTM) [19, 22] with PCA-based features. In a recent German handwritten
text recognition competition [43], the top methods use architectures which generally con-
sist of CNNs and RNNs and achieve remarkable performance. Bluche et al. [6] propose a
MDLSTM-attention system to recognize handwritten text from paragraphs by incorporating
multi-dimensional LSTM [17] and attention mechanism. We are inspired by this idea but
propose significant modifications.

One observation is that the reading order of characters is typically established by con-
vention (e.g. a primary order from right to left in Arabic scripts). Therefore, while LSTM
is capable of capturing long-term dependencies in the handwritten text recognition task, the
local context around a target position is informative to determine a character, as illustrated
in Fig. 1. Characters may rely on different scales of context region. For example, due to the
cursive writing, inferring the character in dash-line box may rely on the context in solid-line
box. Meanwhile, within the context region, the characters may contribute differently to the
inference. Motivated by this, we propose to introduce an adaptive context length selection
and soft attention mechanism into the handwritten text recognition task.

To address the above mentioned issues, we present a framework that treats context re-
gions localization as a decision making process, by which an agent would adaptively select
a context length according to the observed states. In our framework, we prepare a number
of context lengths as the action set. Choosing the context length is formulated as a rein-
forcement learning framework. By applying a policy network, an agent learns to select the
optimal length of context region by analyzing the observed content. To keep the policy
execution lightweight, we take all the decisions in a single step which can be seen as an
instantiation of associative reinforcement learning [46]. Thus we maximize the negative loss
as the global reward of our policy network.

We refer the proposed framework as Adaptive Context-aware Reinforced Agent. Our
contributions are summarized as follows:

• We make the first attempt to address the handwritten text recognition problem in a
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reinforcement learning framework. By learning an adaptive context-aware reinforced
agent, our proposed model is capable of selectively attending context regions during
inference.
• Unlike previous work on Arabic words recognition, we solve a more challenging task

of Arabic handwritten text line recognition.
• We show that our proposed model generalizes well from isolated words to text lines

recognition and achieves the state-of-the-art performances on several benchmarks.

Our paper is structured as follows. We first overview the recent research on handwritten
text recognition, attention mechanism, and reinforcement learning in Section 2. We then
present our model in Section 3, followed by a description of experiments in Section 4 and
results in Section 4.2. We conclude and present future directions in Section 5.

2 Related Work
We first discuss widely used approaches for handwritten text recognition. We then discuss
the recent advances in attention mechanisms and reinforcement learning which our work
builds on.
Handwritten Text Recognition. Traditional approaches to handwritten text recognition are
mainly focused on two key elements: the strategy to extract features and the way to decode
the output of the classifiers to predict the sequence of characters [45]. Poznanski et al. [41]
propose a CNN-N-Gram model to estimate the n-gram frequency profile given a handwritten
word image. Despite of the remarkable performance on several handwritten benchmarks, the
manually defined N-gram CNN model has a large number of output nodes which increases
the training complexity. Shi et al. [44] propose a CRNN model to recognize text in the wild
and is closely related to our work. In their work, a CNN model is used to extract feature
sequences from input images and a recurrent network is built for making prediction for each
frame of the feature sequence. While their approach is designed for scene word recognition
with a constrained image scale, our model is focused on handwritten text recognition and
can generalize from single word to text lines.
Attention Model. “Attention-based" methods have shown to be successful for machine
translation [2], image caption generation [11, 50] and speech recognition [9, 12]. Attention-
based mechanisms can allow the model to learn alignments between different modalities.Many
researchers have explored different attention methods to solve the image-based text recogni-
tion task. Deng et al. [14] propose a coarse-to-fine attention mechanism to convert images
into presentational markup by constructing a sparse coarse attention to reduce the number
of fine attention cells. To recognize the text in the wild, Lee et al. [29] propose a R2AM
model to selectively exploit image features in a coordinated way by incorporating soft atten-
tion [50]. Bluche et al. [6] propose a multi-dimensional LSTM architecture associated with
an attention mechanism to recognize handwritten text in paragraphs without explicit seg-
mentation. Different from previous work, we follow the idea of local attention [32] which
can be viewed as a blend between hard and soft attention. Our model focuses on the local
context around the target states and avoids the expensive computation incurred in the soft
attention. Thus, our model is scalable to images with long character sequences. Mnish et
al. [37] proposes a recurrent neural network to extract information from an image or video by
adaptively selecting a sequence of regions or locations. Different from their work, we focus
on handwritten text recognition and attend different regions during training and inference.
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Figure 2: The framework of our proposed model. The policy network (PN) is trained to
choose an optimal context length from the action set according to the observed state. The
attention module then selectively attends to this context region and explicitly encode it into
the local context. The context captured by LSTM and the local context are simultaneously
taken into consideration during inference.

Reinforcement Learning. Reinforcement learning (RL) is to learn a policy network that
determines certain actions under particular states. It is effective to optimize the sequen-
tial decision problems. Recently, several attempts have applied RL to computer vision
tasks [8, 23, 24, 31, 49, 51]. Zhao et al. [51] and Wu et al. [49] explore deep RL to dy-
namically choose layers of CNNs during inference.A video object segmentation model [24]
is proposed to learn object foreground-context regions by incorporating a reinforcement
cutting-agent learning framework. In our work, we adopt a policy network to select context
regions to attend according to the observed states during inference. Inspired by the Block-
Drop model [49], we view our decision making process as an instantiation of associative
reinforcement learning where all the decisions are taken in a single step.

3 Methodology

In offline handwritten text recognition tasks, the goal is to build a system which, given an
image, produces a prediction of the image transcription. Our insight is that it is beneficial to
simultaneously leverage both local context (as illustrated in Fig. 1) and global context. The
key idea is that we adaptively select context region to attend during inference according to
the observed states. Fig. 2 shows an overview of our framework.

Formally, given a dataset S = {(I,z)}, I is an image and z is the textual transcription.
We take a raw image as input and encode it into a feature sequence s, where st is the state
at time-step t. We train an adaptive context-aware reinforced agent to predict the context
length of st . We then derive the expectation ct within the window size by leveraging the soft
attention mechanism. ct is applied as the adaptive local context during inference. Details of
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the model are demonstrated in the following sections.

3.1 Visual Features Encoder

The visual features of an image are extracted from a fully convolutional neural network
which consists of max-pooling layers. We model it using the CNN network [44] for OCR
from images (Specification is given in Table 1). The network takes the raw inputs and pro-
duces feature maps that are robust and contain high-level descriptions of the input images.
Suppose the feature maps are of size D×H×W , where D denotes the number of channels
and H and W are the height and width of the feature maps.

According to the translation invariance property of CNN, each column of the feature
maps corresponds to a local image region as the receptive field. The feature maps are then
flattened into a sequence with a length of W , each of which has D×H dimensions. Specifi-
cally, each feature vector of the feature sequence is generated from left to right on the feature
maps by column. We denote the the visual feature sequence as v = (v1, . . . ,vW ). We follow
the same settings [44], and fix the height of each column H as a single pixel.

Restricted by the sizes of the receptive fields, the feature sequence leverages limited
image contexts. We run a RNN over the feature sequence V to model the long-term depen-
dencies within the sequence. Formally, a RNN is a parameterized function that recursively
maps an input vector and a hidden state to a new hidden state. At time t, the hidden state
is updated with an input vt in the following manner: ht = RNN(ht−1,vt ;θ). For simplicity
we will describe the model as a RNN, but all experiments use the BLSTM. We denote the
encoded states from v as h = h1, . . . ,hW .

Conv MaxPool Conv MaxPool Conv Conv MaxPool Conv Conv MaxPool Conv
3×3 2×2 3×3 2×2 3×3 3×3 2×2 3×3 3×3 2×2 2×2

num: 64 num: 128 num: 256 num: 256 num: 512 num: 512 512
sh:1 sw:1 sh:2 sw:2 sh:1 sw:1 sh:2 sw:2 sh:1 sw:1 sh:1 sw:1 sh:2 sw:1 sh:1 sw:1 sh:1 sw:1 sh:2 sw:1 sh:1 sw:1
ph:1 pw:1 ph:0 pw:0 ph:1 pw:1 ph:0 pw:0 ph:1 pw:1 ph:1 pw:1 ph:0 pw:1 ph:1 pw:1 ph:1 pw:1 ph:0 pw:1 ph:0 pw:0

Table 1: The CNN architecture configuration.

3.2 Context Features Decoder

Considering the cursive and imprecise nature in the handwritten text recognition problem,
our insight is that explicitly encoded local context (as illustrated in Fig. 1) is complemen-
tary to global context when determining observed states into characters. Given a feature
sequence, learning the context region localization agent would result in a nearly continuous
decision-making process. To simplify this problem, we discretize the context regions into an
action set and leverage a policy network to make decisions in selecting appropriate context
regions.

We introduce an adaptive context-aware agent to select and attend different context re-
gions given states at different time-steps. We first leverage a BLSTM to extract higher level
of abstractions from the encoder outputs s as st = RNN(st−1,ht ;θ).
Adaptive Context-aware Reinforced Agent. Our method is based on Q-learning, a kind
of reinforcement learning, which focuses on how an agent ought to take actions so as to
maximize the final reward. The Q-learning model consists of an agent, states and a set of
actions.
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We adopt s as the sequence states. The searching action set A contains different context
lengths and is denoted as A = {d1, . . . ,dn}, where n is the number of context lengths. For
an input st , we design a policy network to learn the expected adaptive context-aware rein-
forced agent, which determines the action policy a(st) according to the observed st . Both the
state and action are finite and discrete to ensure a relatively small searching space. Given a
(st ,a(st)), we adopt the negative loss defined in Sec. 3.3 as our reward. Following the train-
ing strategy [49], we train the policy network to predict all actions at once which is different
from the standard reinforcement learning algorithms and is essentially a single-step Markov
Decision Process (MDP) given the input states. This can also be viewed as contextual ban-
dit [28] or associative reinforcement learning [46].

Formally, given a sequence s, we define an action policy as a multinomial distribution:

πW (a|s) =
T

∏
t=1

pat
t , (1)

p = fpn(s;W ), (2)

where fpn denotes the policy network parameterized by weights W and p is the output of the
network after the softmax function. We denote the probability of the corresponding action
at at time-step t as pat

t . To learn the optimal parameters of the policy network, we maximize
the following expected reward:

J = Ea∼πW [R(a)]. (3)

To maximize Eqn. 3, we utilize policy gradient [46], one of the seminal policy search meth-
ods [13], to compute the gradients of J. The gradients can be derived as:

∇W J = E[R(a)∇W logπW (a|s)], (4)

Where W denotes the parameters of the policy network. We approximate the expected gra-
dient in Eqn. 4 with Monte-Carlo sampling using all samples in a mini-batch. To reduce
variance [46] in these gradient estimates, we utilize a self-critical baseline R(ũ) as in [42]
and Eqn. 4 can thus be rewritten as:

∇W J = E[(R(a)−R(ã))∇W logπW (a|s)], (5)

where ã is defined as the maximally probable configuration under the current policy. For
example, ã is the action from A with the index of argmax(pt).

To further encourage exploration in policy searches, we adopt a parameter α to bound the
distribution p and prevent it from saturating. The modified distribution p′ can be formulated
as:

p′ = α · p+(1−α) · (1− p). (6)

The modified distribution p′ is applied when we sample the action policies.
Local Attention. Since not every time-step of the sequence is relevant for the prediction, the
model should extract the salient parts. Our local attention mechanism selectively focuses on
a small window of context. In concrete details, given a predicted window size D at time-step
t, the source hidden states within the window are denoted as h[t−D

2 :t+D
2 ]

. We follow past
empirical work [32] and compute the attention weight vector as:

aatt = so f tmax(sT
t Wah[t−D

2 :t+D
2 ]
), (7)
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where Wa is the projection vector which will be jointly trained with the model. Then the
context at time-step t is defined as an expectation of s within the window of [t− D

2 : t + D
2 ]:

ct = ∑
i

aatt
i hi. (8)

To take both the global context and explicitly encoded local context into consideration, we
use the concatenation of st and ct as the representation at time-step t.

In summary, our model works as follows: fpn is used to decide which window size to
attend conditioned on the input feature sequence. A prediction is generated by running a
forward pass and we aim to maximize the total expected reward, or equivalently minimize
the negative expected reward as our loss.

3.3 Transcription Layer
Transcription is a process of converting the per-frame predictions made by the decoder mod-
ule into a label sequence. Mathematically, transcription procedure is to find the label se-
quence with the highest probability conditioned on the per-frame predictions.

In this section, We adopt Connectionist Temporal Classification (CTC) [18] layer to
transform variable-width feature tensor into a conditional probability distribution over label
sequence. The probability ignores the position where each per-frame prediction is located
and avoids the labor of labeling positions of individual characters.

Formally, let L be the alphabet and L̂= L∪{−} where − is a blank character. Given an
input image I, the generated predictions π = {π1, . . . ,πT}, where T is the sequence length
and π ∈RL̂. The probability distribution over the alphabet L̂ is denoted as y = {y1, ...,yT}.
We denote yt

πt as the probability of generating label πt at time-step t. The sequence π may
contain blank characters and repeated labels. CTC defines a map function B which maps π

to a concise representation l by removing blank characters and repeated labels (e.g. hhee–ll-
lo–=hello).

Thus, the probability of π is defined as p(π|y) = ∏
T
t=1 yt

πt . The conditional probability
of observing the output sequence l is then given as:

p(l|y) = ∑
π:B(π)=l

log p(π|y). (9)

Due to the exponentially large number of summation items, directly computing Eqn. 9 is
computationally infeasible. While Eqn. 9 can be efficiently computed using the forward-
backward algorithm [18].

4 Experiments

4.1 Experimental Setup
In this section, we present our experiment setups by introducing the benchmarks, the exper-
iment settings and evaluation metrics used for evaluation.
Datasets. We present results on the commonly used handwritten text recognition bench-
marks. The datasets used are KHATT, IAM and RIMES, which contain images of handwrit-
ten Arabic, English and French, respectively. We use the same network for all experiments
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and no language specific information is needed except for the character set of each bench-
mark. A brief description of these benchmarks is as follows.

The KHATT [33] database is an offline handwritten text recognition database of cursive
Arabic text documents. It contains 2,000 paragraphs by 1,000 writers. The paragraphs
are segmented into a total number of 9,327 lines. The database is provided with line level
annotations and a standard data set splits.

The IAM [34] database is a handwritten text recognition database of mostly cursive
English text documents. The training set comprises 747 documents (6,482 lines, 55,081
words), the validation set 116 documents (976 lines, 8,895 words) and the test set 336 docu-
ments (2,915 lines, 25,920 words). The texts in this database typically contain 50 characters
per line.

The RIMES [21] database contains more than 60,000 words written by over 1,000 au-
thors in French. This database has several versions with each one a super-set of the previous
one. We use the latest version presented in a ICDAR 2011 contest for our experiments.
Experiment settings. We follow the lexicon-based methods [1, 4, 16, 41] and use all the
dataset words, both train and test sets, as the lexicon. The model’s predictions are compared
with the actual image transcriptions. To ease comparison to other algorithms, we report using
the same measure commonly used in the respected benchmarks. On IAM and RIMES, we
show our results using WER and CER measures. Whereas on KHATT, images are annotated
at line level which makes the measure of WER infeasible. We report our results using CER
calculated at sequence level.

Different character sets are used for the benchmarks. More specifically, the character set
for IAM contains the lower and upper case Latin alphabet. Digits are not included as they
are rarely used in this dataset. For RIMES, the character set contains the lower and upper
case Latin alphabet, digits and accented letters. For KHATT, as the images are at line level,
the character set contains the Arabic alphabet, comma, dot, space and unknown letters.
Evaluation protocols. We apply our model to the test set and compare the predicted tran-
scription with the ground truth transcriptions. The performance can be measured by Word
Error Rate (WER) and Character Error Rate (CER). WER is the ratio of the reading mis-
takes calculated at the word level. CER measures the Levenshtein distance normalized by
the length of the ground-truth word. That is, we measure the total number of substitu-
tions, insertions and deletions that would be required to turn the prediction sequence into
the ground-truth one.
Implementation details. In our experiments, we binarize images by applying Otsu’s method
[38]. The heights of images are scaled to 32 and the widths are proportionally scaled with
heights. The size of hidden states for encoder and decoder modules are set as 128. We
implement the neural network using PyTorch. Parameter optimization is performed using
the Adam algorithm [25] with a batch size of 32 and a learning rate of 0.01. To reduce
the effects of “gradient exploding", we use a gradient clipping of 0.1 [39]. We insert batch
normalization layer after each convolutional layer to accelerate the training process. We
empirically set values of actions asA= {1,5,10,15,20}. Training the network takes around
20min on KHATT dataset using a single GPU TITAN X.

4.2 Results and Discussion
To evaluate the effectiveness of our proposed algorithm, we conduct an extensive set of
experiments on handwritten words recognition benchmarks. We also investigate the ablation
studies on handwritten text lines recognition benchmarks.
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Handwritten word recognition task. We compare to the state of the art on IAM and RIMES
datasets in Table 2. Our model outperforms previous work by large margins on the handwrit-
ten words recognition benchmarks. Wigington et al. [48] reports two results with/without
data augmentation techniques on the test set. For a fair comparison, we compare the per-
formance under the same experiment settings by leveraging the training set only. As Shi
et al. [44] is closely related to our work, we report the performance on two benchmarks.
While their work is focused on scene text recognition, it is still competitive compared to
other previous work. Our model outperforms Shi et al. [44] which indicates the adaptive
context-aware reinforced agent can help with recognizing handwritten words.

Database IAM RIMES
Model WER CER WER CER

Boquera et al. [16] 15.50 6.90 - -
Telecom ParisTech [20] - - 24.88 -

IRISA [20] - - 21.41 -
Jouve [20] - - 12.53 -

Kozielski et al. [26] 13.30 5.10 13.70 4.60
Almazan et al. [1] 20.01 11.27 - -

Messina and Kermorvant [36] 19.40 - 13.30 -
Pham et al. [40] 13.60 5.10 12.30 3.30
Bluche et al. [4] 20.50 - 9.2 -

Doetsch et al. [15] 12.20 4.70 12.90 4.30
Bluche et al. [5] 11.90 4.90 11.80 3.70
Shi et al. [44] 6.74 3.75 4.23 2.10

Menasri et al. (combined) [35] - - 4.75 -
Poznanski et al. [41] 6.45 3.44 3.90 1.90
Wigington et al. [48] 7.18 3.93 3.84 1.82

Our work 5.45 3.10 2.97 1.45

Table 2: Comparison to previous methods on IAM and RIMES (ICDAR2011) datasets. Our
model achieves the state-of-the-art performance by large margins on both benchmarks. All
numbers are in percent.

Handwritten line recognition task. To test the scalability to long sequences (e.g. 60 char-
acters per sequence in KHATT dataset), we compare our model to the state-of-the-art algo-
rithms on IAM and KHATT benchmarks. Our models are trained and evaluated using full
lines. The comparisons are as shown in Table 3. We report the performance of Shi et al.’s
work [44], as it is closely related to our work and can be viewed as a baseline. Our model
lowers the error rate by 1.7% compared to the baseline model. On IAM dataset, we compare
our model to Bluche et al.’s work which achieves remarkable performance on multi-line
handwritten recognition [6]. Our model outperforms their work on both line and isolated
word recognition.
Ablation studies. To investigate the impact of our proposed model, we conduct an extensive
set of experiments. The first experiment is to validate if local attention mechanism outper-
forms global attention over the full sequence. As shown in Table 3, the global attention
performs worse on both benchmarks. One possible reason is that unlike other tasks (e.g. ma-
chine translation), global attention introduces more noise when dealing with long sequences
due to the imprecise nature of handwriting. We then replace the adaptive context-aware
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reinforced agent with a single fixed-size. The window size is empirically set as 9, the me-
dian value of our action sets. This modified model performs better than the baseline while
consistently worse than our proposed model on both benchmarks.

Database IAM KHATT
Model CER CER

Shi et al. [44] 6.20 8.65
Bluche et al. (w/o attention) [6] 6.60 -
Bluche et al. (w/ attention) [6] 7.00 -

Our work (w/ GA) 8.35 10.20
Our work (w/ fixed-size LA) 5.91 7.62

Our work (full model) 5.15 6.93

Table 3: Comparison to previous methods and ablation studies on IAM and KHATT datasets.
Our experiments are conducted on full lines instead of isolated words. All numbers are in
percent. GA: global attention, LA: local attention.

5 Conclusion

In this paper, we have made a pioneer effort to formulate handwritten text recognition in
a reinforcement learning framework and propose a novel adaptive context-aware reinforced
agent to tackle this problem. The proposed method can generalize well from isolated word
recognition to full lines recognition. Comprehensive experiments on commonly used bench-
mark datasets demonstrate the effectiveness of the proposed method. In the future, we plan
to extend this method to multi-lines and paragraphs recognition without pre-segmentation.
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