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Abstract

In this paper we present a novel vehicle detection method in traffic surveillance sce-
narios. This work is distinguished by three key contributions. First, a feature fusion
backbone network is proposed to extract vehicle features which has the capability of
modeling geometric transformations. Second, a vehicle proposal sub-network is applied
to generate candidate vehicle proposals based on multi-level semantic feature maps. Fi-
nally, a head network is used to refine the categories and locations of these proposals.
Benefits from the above cues, vehicles with large variation in occlusion and lighting con-
ditions can be detected with high accuracy. Furthermore, the method also demonstrates
robustness in the case of motion blur caused by rapid movement of vehicles. We test our
network on DETRAC[21] benchmark detection challenge and it shows the state-of-the-
art performance. Specifically, the proposed method gets the best performances not only
at 4 different level: overall, easy, medium and hard, but also in sunny, cloudy and night
conditions.

1 Introduction
With constant improvements of urban intelligent level, more and more traffic surveillance
devices has been used. Locating vehicles from videos or images in traffic surveillance sce-
narios is not only an important research field in computer vision, but also meaningful appli-
cations in the real world. Based on the detected vehicles, further processes can be carried
out, such as vehicle tracking, vehicle counting, extracting the license number, recognizing
vehicle type, and so on. The basis of these further work is to detect vehicles as accurate as
possible. However, there are still a fairly amount of challenges in vehicle detection from
traffic surveillance scenarios. Occlusion is one of the most common interference factors and
it reduces the detection performance when the traffic is crowded. Accuracy of a vehicle
detector is also influenced by weather and lighting conditions. Moreover, fast moving ve-
hicles lead to amounts of motion blur images. Furthermore, vehicle varies more widely in
appearance, which comes from not only the diversity of vehicle types such as bus, truck, car
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(a) (b)
Figure 1: Using our method, vehicles in the images with various sizes, types and severe
occlusion can be accurately detected with a very high recall rate and no false alarm. (a) and
(b) are two examples of detected results in DETRAC test set.

and so on, but also the various view angles from different orientations. This makes vehicle
detection even more challenging.

In the past few years, some vehicle detectors have been designed based on different hand-
crafted features such as Aggregate Channel Features (ACF)[1] or Deformable Part Model
(DPM)[6]. Relying on the part-based features or rigid characteristic of vehicle, these meth-
ods can detect a few near complete vehicles, but they are incapable of detecting the ones
which are heavily distracted by complex orientations, types, occlusion, and illumination.

Recently, deep convolutional neural network (CNN)[12] has been widely used for object
classification and detection. Among kinds of variants of the feed-forward CNN based ap-
proaches, we can roughly divide them into two categories. One is the two stage detectors
such as RCNN[9], Fast R-CNN[8], Faster R-CNN[18], R-FCN [4] and so on. They have a
similar structure: the first stage proposes many plausible regions and the second stage further
refines these regions. The other one is the one stage detectors [[7], [14],[17], [16]] which get
rid of the proposal generation process and directly train a single stage end-to-end detector.

Vehicle detectors based on these networks have been proved to be more effective than
traditional ones. But there is still many problems for improvement in these methods. Al-
though the two stage detectors can generate higher quality detections than the single stage
ones via a more computationally expensive head net, any missed vehicles in the first stage
cannot be recovered in the following network. So it is very crucial for the two stage detectors
to ensure a good recall rate during the proposal generation stage. Furthermore, looking for
the response characteristics just from a single feature map layer, it is not enough to handle
with vehicle detection in complicated situation. They are two main problems that we try to
solve and to make vehicle detection more accurately.

In this paper, a novel vehicle detection network based on R-CNN architecture is pro-
posed. The proposed method has a high capability of handling with vehicles in the traffic
surveillance images with various sizes, types and severe occlusion. The result examples
are shown in Fig.1. Our main contributions are summarized as follows: (1) A new feature
extractor has been constructed. Inspired by an ingenious improvement which is called the
deformable convolution [3], we add this mechanism to a feature fusion backbone network to
improve the ability of modeling geometric transformations. This is easily restricted by the
limited training samples. The new extractor has been proven competitive in feature extrac-
tion. (2) A vehicle proposal sub-network is applied to generate proposals. It can obtain
higher recall rate than the previous method such as sliding window or the region proposal
network (RPN) in faster RCNN. (3) An effective filtering mechanism in the process of train-
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Figure 2: Overview of our vehicle detection network. Res{1, 2, 3, 4} are the building mod-
ules of ResNet-101 network. Res5* denotes Res5 building module assigned with deformable
convolution layers. Roi Pooling* is a ROI pooling layer which can distribute the ROIs to the
appropriate feature map to carry out the pooling operation. FC is the fully-connected layer
with 2048 channels.

ing. In order to avoid that the vehicle detector harvests hard negatives from the areas where
vehicles have not been annotated, we design a filtering mechanism to supervise vehicle pro-
posals encoding processes. This makes training procedure focusing on vehicles with obvious
features. Therefore, our network can be trained more effective.

We have tested our network on the DETRAC benchmark detection challenge. Further-
more, we have compared our method with all the submitted approaches and analyzed the
comparison results. Our method ranks first in the detection leaderboard and gets the highest
accuracy scores at 7 different evaluation metrics: overall, easy, medium, hard, sunny, night
and cloudy. The detection results confirm that our network achieves the state-of-the-art per-
formance.

The following of this paper is organized as follows. In Section 2, we explain the method
in details. In Section 3, we introduce the experiments and present the results. In Section 4,
we conclude this paper.

2 Framework

2.1 Overview

Our vehicle detection network is illustrated in Fig.2. ResNet-101 [10] is selected to extract
vehicle features using five building modules [10]. We assign the last module with deformable
convolution layers[3] at reasonable position. When a test image is fed into this network,
feature maps are produced at multiple layers. Next, a feature fusion network fuses these
feature maps and feeds them into vehicle proposal network which is applied to generate
vehicle proposals. Based on the generated proposals, feature response of interest are found
on the suitable feature map from the feature fusion network. Then, these regions of interest
are pooled into the same size vectors and sent to the following network. Finally, the bounding
boxes for different categories are produced in the head network. The entire framework is
an end-to-end structure for vehicle detection. We will describe each individual network in
details in the following stage.
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Figure 3: The left part is feature fusion network, UP+CP denotes the upsampling and the
cropping operation. Res2-x is the last layer of the Res2 module. This is same for other
modules. Conv* is a 3×3 convolution layer which stride is 2 and c© is the feature fusion
operation. The right part is vehicle proposal network. RPN* is the region proposal network
specialized for vehicle.{P6, P5, P4, P3, P2} are the fused feature maps.

2.2 Backbone Convolution Network

For the requirements of rich feature representation, we choose the ResNet-101 as the basal
convolution network, which has shown a strong capability of extracting feature in visual
recognition tasks such as image classification[6], object detection[9] and semantic segmen-
tation[15]. Considering that training this network from scratch costs a lot of time and
need a large dataset, we take a strategy of loading the weights pre-trained on the ImageNet
dataset[5]. This is a common practice in object detection networks [[18], [7]].

As discussed in [3], the capability of modeling geometric transformations of convolution
neural networks is influenced by the inherently limitations. One of them is that all activation
units in the same CNN layers have a same receptive field size. This is undesirable for high-
level layers to encode the semantic over spatial locations, especially when object appearance
and size varies widely in images. On the contrary, using convolution operation with position
offset, the deformable convolution activation units have a more flexible receptive and alle-
viate the inherently limitation of CNNs. This is the reason why we embed the deformable
convolution layers in the last building module of our basal convolution network. The spe-
cific operation is as follows. From the preceding feature maps, the 2D location offsets of
each units are learned. Through adding a location offset to its corresponding unit coordi-
nates, we can obtain a new unit coordinates. When a 3×3 filter kernel operates convolution,
the unit in sampling region will be replaced by a new unit which is obtained by the method
described above. Besides, channels of these layers are divided into 4 groups and the offsets
are shared in different channels of each same group. Owing to that, the deformable convo-
lution layer dose not introduce too many additional parameters to the network and enhances
the capability of modeling geometric transformations.

At the same time, locating serious occlusion vehicles accurately in heavy traffic needs
adequate vehicle boundary information extracted by the convolution layers. Although high-
level convolution layers have adequate semantics to classify vehicle, they cannot afford to
reserve the vehicle boundary characteristics since the resolution of feature maps gradually
become weak by the pooling operation. On the contrary, the activation units in low-level
feature maps have a smaller and better scope to localize object boundary. So we need both
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Figure 4: The left figure shows the aspect ratio distribution of the vehicles in DETRAC
dataset. The right part is the size distribution heat map. Different colors represent the number
of vehicles. The width and height are the 10 times smaller than the truth value.

the high-level semantics and high-resolution features maps for vehicle detection. Prior works
[[13], [11]] have also shown the gain of merging and concatenating feature maps from differ-
ent level layers. Inspired by [13], we design a feature fusion network to leverage the feature
hierarchy and build new feature maps with both the high-level semantics and high-resolution
feature information, which is shown in the left part of Fig.3. At first, we pick out feature
maps of the last layers from Res{2, 3, 4, 5} modules and create new feature maps through
implementing a 3×3 convolution operation of step size 2 on the last layers of Res5. Second,
we use the 1×1 convolution filters to change the feature maps channels of these five groups
into the same size of 256. Third, from high to low levels layers, two feature maps in same
stage are fused by the method of adding elements in same position directly and then mixed
via a 3× 3 convolution filter. Besides, we operate the upsampling and cropping in feature
maps {P6, P5, P4, P3} to confirm that different resolution feature maps are normalized into
the same size. Through this process, the feature fusion network can produce multi-level
feature maps with different resolutions and rich semantics.

2.3 Vehicle Proposal Network

Since vehicle is the rigid-body object, its shape has a certain distribution in traffic surveil-
lance scenarios. On the other hand, as we analyzed in section 1, a high recall rate during
the proposal generation stage is important for the two-stage detector. Considering that, a
region proposal network specialized for vehicle is constructed. We analyze the training set
of DETRAC dataset, which includes 84k images and 598,281 annotated vehicles. It is a
large dataset that has strong representativeness of traffic surveillance. So we counted the
distribution of vehicles in this dataset. As shown in Fig.4, the left part is vehicle aspect ratio
distribution. We can easily find that there are two different peaks value of the histogram and
most of the data is centered around them. The corresponding x-coordinate of the two peaks
are approximate 1.0 and 2.0. It suggests that the majority of aspect ratios of the vehicles in
this scenario are around 1.0 and 2.0. The other part in Fig.4 is the size distribution heat map
which can roughly describe the vehicle width and height. All the scales in the graph is 10
times smaller than the truth value for the sake of demonstration. This heat map clearly shows
that the vehicles distribute in the bottom left which represents small vehicles in images, but
the whole distribution is a wide area. Taking the width range as an example, there are a lot
of vehicles from 10 to 300 in width.

In view of the above analysis, we put forward a special vehicle proposal network to gen-
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erate vehicle region proposals as shown in the right part of Fig.3. RPN* is a region proposal
network which is similar to [18]. As the way it works, with 3×3 convolutional filters slides
on the feature map, a certain number of vectors are produced, then 1×1 convolutional filters
change the channels of these vectors to produce the proposals. In this process, many anchors
are encoded in advance. We set the anchor ratios to 1.0 and 2.0 to match the aspect ratio
distribution of the vehicles. Furthermore, we use five parallel RPN* to generate proposals at
multi-level semantic feature maps and choose 5 base anchors with height of 16, 32, 64, 128,
256 pixels to cover the vehicle size distribution range. Each RPN* corresponds to a certain
size anchor according to the resolution of feature maps. For example, the RPN* connected to
the P3 layer has two anchors with 32 pixels height and 1.0, 2.0 aspect ratios. This is because
that the P3 is second size in the fusion layers and it has appropriate resolution to capture
second small proposals around 32 pixels. Due to this structure, our vehicle proposal network
can generate proposals covering vehicle size distribution with only 10 anchors. To extent,
it compensates for the time loss caused by complex structure. Through using multi-level
fused feature maps and special anchors for vehicle in surveillance scenarios, high quality
and sufficient proposals are generated and fed into the head network.

Furthermore, according to the data set, there are many ignored regions which are hard
to be manually annotated or too far away from surveillance equipment. These ignored re-
gions have been declared in the annotations. We assign these regions another label named
"ignored" and send them into the network together with vehicle labels. This category is not
the target to be trained but the supervision to eliminate the proposals located in or nearby
the ignored regions. We set a hyper-parameter which is Ignore Fraction. When the anchors
and proposals are generated in vehicle proposal network, they will be calculated the overlap
with the "ignored" labeled region. And the ones with IOU larger than Ignore Fraction do
not contribute the data to the training process. This handling mechanism is implemented
to avoid that our vehicle detector harvests hard negatives from those areas and makes the
network training procedure more effective and focused.

2.4 Head Network

The head network is constructed with a Roi Pooling* layer and two fully-connected layers.
Different from the original ROI pooling operation applied by general detection of neural
networks just like [18], we add a distribution mechanism which assign the ROIs to the ap-
propriate feature map to carry out the pooling operation. We implement this function with
the following formula:

p = log2

(√
roi_w× roi_h/x

)
(1)

Feature_id =


P2 p≤ 2
P3 2 < p≤ 3
P4 3 < p≤ 4
P5 4 < p≤ 5
P6 5 < p

(2)

Here roi_w and roi_h denote width and height of the ROI, respectively. The denominator
x comes from the pooled w or pooled h parameter which is the fixed width or height of
this layer output. For example, x is 6 in our network because we set the pooled w to 6.
The result of the first formula, p, is the number of pooling operation required. It is used to
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find the corresponding feature map with an appropriate receptive field through the relational
expression in Equation (2).This algorithm can make each position value of the pooled feature
region retain the original information as far as possible instead of doing interpolation or
rounding operation. The entire distribution mechanism is effective to ensure that the features
of the regions of interest are sufficiently large before pooling operation. As a result, there
are adequate information to feed into the following layers. Then, two fully-connected layers
with 2048 channels are applied to refine the classes and the bounding boxes of these ROIs.

3 Experiments

3.1 Network Training

As stated above, our backbone convolution network is initialized with the pre-trained Ima-
geNet model and the offsets in the deformable convolution layer are zero initialized. Other
sub-networks are randomly initialized from a zero-mean Gaussian distribution with standard
deviation of 0.01. Our network is trained end-to-end with stochastic gradient descent (SGD)
using the entire training and validation set. The initial learning rate is 0.01, which is then
divided by 10 at 50k iterations and again at 70k iterations. Our model is totally trained with
90k iterations. We use horizontal image flipping as the only form of data augmentation un-
less other noted. The weight decay is set to 0.0001 and the momentum is set to 0.9. The
mini-batch size of the input images is one. For vehicle proposal network, we use the batch
size of 512 proposals. Anchors that overlap any ground truth for more than 0.7 in intersection
over union (IoU) are assigned positive. And those that overlap the ground truth for less than
0.3 in IoU are assigned as negative examples. We keep 2000 proposals using non-maximum
suppression (NMS) with threshold 0.7 to eliminate redundant boxes. For the head network,
the candidates that overlap the ground truth for IoU ≥ 0.5 are assigned positive ones and the
others are assigned negative. OHEM [19]is used to control loss reverse propagation. The
standard cross entropy loss is used for classification and the standard smooth L1 loss [8] is
used for the bounding box regression.

Our model are trained on DETRAC detection dataset. The images have the same size
of 960×540 and they are continuous frames from 60 different videos which are captured in
different scenarios including sunny, cloudy, rainy and night scenarios.We split the training
images into the training set with 56k images and the validation set with 28k images.

3.2 Control Experiments

A number of experiments have been performed to evaluate the effectiveness of the proposed
network: (1) We examine how each component of our backbone network affects the de-
tection accuracy. The results are listed in Table 1. The mean average precision (mAP) is
produced by the controlled experiments on the validation set. DCL denotes the deformable
convolution layer and VPN denotes the vehicle proposal net. Fusion+RPN is implemented
by just using one resolution feature maps from feature fusion net to generate proposals. We
choose the Faster RCNN as the baseline and add the improved components. Our method
achieves considerable improvement, which validates the previous analysis. (2) We remove
the second stage part of our network and train the proposal net on training set. The recall
rate of region proposal stage using different number of fused feature maps on validation set
are presented in Table 2. The IoU threshold of test procedure is set to 0.5. We take the RPN
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Controlled Experiments Overall(mAP)
Faster RCNN[18] 73.32
Res101+DCL+RPN 76.07
Res101+DCL+Fusion+RPN 85.64
Res101+DCL+Fusion+VPN 88.93

Table 1: Effects of components on the performance of our method.

Feature Map Recall Rate (IOU=0.5)
Res4[10] 94.10
P4 96.32
P5+P4+P3 97.68
P5+P4+P3+P2 98.96
P6+P5+P4+P3+P2 99.02

Table 2: Recall rates of the proposal net in the first stage with different feature maps.

in Faster RCNN as the baseline and use Res4 as the input of the RPN. The results prove that
generating vehicle proposals from multiple fused feature maps can achieve a higher recall
rate.

3.3 Comparison with state-of-the-art

We compare our method with state-of-the-art vehicle detection approaches on the test set of
DETRAC detection dataset. The results are shown in Table 3. Our method HAVD (high ac-
curate vehicle detector) achieve the highest overall accuracy of 80.51% atop the leaderboard.
Compared to HAT, which is the second in the leaderboard, our proposed network improves
the overall accuracy by 2.4%. Besides, we achieve a significant overall improvement of
2.6% mAP over the GP-FRCNNm[2] and 10.6% mAP over R-FCN[4]. Notably, our method
obtains the highest accuracy scores in 7 scenarios, which shows the effectiveness of vehicle
detection and robustness to various scenarios. Fig.5 further compares the performance of
different vehicle detection methods. It can be seen from the figure that our method with red
precision-recall curve achieves better detection coverage as well as accuracy.

Method Overall Easy Medium Hard Cloudy Night Rainy Sunny
RCNN[9] 48.95 59.31 54.06 39.47 59.73 39.32 39.06 67.52
YOLO[17] 57.72 83.28 62.25 42.44 57.97 64.53 47.84 69.75
Faster RCNN2[18] 58.45 82.75 63.05 44.25 66.29 69.85 45.16 62.34
EB[20] 67.96 89.65 73.12 53.64 72.42 73.93 53.40 83.73
R-FCN1[4] 69.87 93.32 75.67 54.31 74.38 75.09 56.21 84.08
RTN 74.15 91.52 79.16 61.73 77.02 77.20 65.27 84.14
GP-FRCNNm[2] 77.96 92.74 82.39 67.22 83.23 77.75 70.17 86.56
HAT 78.64 93.44 83.09 68.04 86.27 78.00 67.97 88.78
Ours-HAVD 80.51 94.48 86.13 69.02 87.28 82.30 69.37 89.71

Table 3: Mean average precision (mAP) of the submitted approaches on the DETRAC test
set.
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Figure 5: Comparison of precision-recall curves for different vehicle detection methods on
the DETRAC test set.

(a) Motion blur (b) Large scale variance

(c) Night illumination condition (d) Severe occlusion
Figure 6: Examples of detection results. Our method is capable of handling vehicles with
severe occlusion, large scale variance and motion blur. It also performs well in night illumi-
nation condition.

4 Conclusion

In this paper, we propose a highly accurate vehicle detection network which can be applied
in traffic surveillance scenarios. More specifically, a feature fusion backbone network for
vehicle feature representation is firstly designed. Then a vehicle proposal net with high recall
is applied to generate proposals. Lastly, a head network which is more reasonable to carry
out pooling operation is proposed refine the proposals. Benefits from the designed network
architecture and an effective filtering mechanism in the training procedure, the proposed
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network is effective in feature representation and various vehicle detection. Experiments
demonstrate that our method achieves the state-of-the-art performance on the challenging
DETRAC detection dataset.

Acknowledgement

This work was supported by the National Natural Science Foundation of China under Grant
Nos. 61771288, 61701277 and the state key development program in 13th Five-Year under
Grant No. 2016YFB0801301.

References
[1] A. Alpher and J. P. N. Fotheringham-smythe. frobnication revisited. Journal of Foo,

2003.

[2] Sikandar Amin and Fabio Galasso. Geometric proposals for faster r-cnn. AVSS, 2017.

[3] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable convolutional
networks. ICCV, 2017.

[4] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via region-based
fully convolutional networks. NIPS, 2016.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. CVPR, 2009.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection
with discriminatively trained partbased models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2010.

[7] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg. Dssd: Deconvolutional single
shot detector. arXiv:1701.06659, 2017.

[8] Ross Girshick. Fast r-cnn. ICCV, 2015.

[9] Ross Girshick, Jeff Donahue, revor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. CVPR, 2014.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. CVPR, 2016.

[11] T. Kong, A. Yao, Y. Chen, and F. Sun. Hypernet: Towards accurate region proposal
generation and joint object detection. CVPR, 2016.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. NIPS, 2012.

[13] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie. Feature pyramid
networks for object detection. CVPR, 2017.



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 11

[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg. Ssd:
Single shot multibox detector. ECCV, 2016.

[15] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic seg-
mentation. CVPR, 2015.

[16] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. CVPR, 2016.

[17] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. CVPR, 2016.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. NIPS, 2015.

[19] A. Shrivastava, A. Gupta, and R. Girshick. Training regionbased object detectors with
online hard example mining. CVPR, 2016.

[20] Li Wang, Yao Lu, Hong Wang, Yingbin Zheng, Hao Ye, and Xiangyang Xue. Evolving
boxes for fast vehicle detection. IEEE International Conference on Multimedia and
Expo (ICME), 2017.

[21] L. Wen, D. Du, Z. Cai, Z. Lei, M.-C. Chang, H. Qi, J. Lim, M.-H. Yang, and S. Lyu.
DETRAC: A new benchmark and protocol for multi-object detection and tracking.
arXiv:1511.04136, 2015.


