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Abstract

Multispectral pedestrian detection has attracted increasing attention from the research
community due to its crucial competence for many around-the-clock applications (e.g.,
video surveillance and autonomous driving), especially under insufficient illumination
conditions. We create a human baseline over the KAIST dataset and reveal that there is
still a large gap between current top detectors and human performance. To narrow this
gap, we propose a network fusion architecture, which consists of a multispectral proposal
network to generate pedestrian proposals, and a subsequent multispectral classification
network to distinguish pedestrian instances from hard negatives. The unified network is
learned by jointly optimizing pedestrian detection and semantic segmentation tasks. The
final detections are obtained by integrating the outputs from different modalities as well
as the two stages. The approach significantly outperforms state-of-the-art methods on
the KAIST dataset while remain fast. Additionally, we contribute a sanitized version of
training annotations for the KAIST dataset, and examine the effects caused by different
kinds of annotation errors. Future research of this problem will benefit from the sanitized
version which eliminates the interference of annotation errors.

1 Introduction
Pedestrian detection is a vigorously studied topic in the field of computer vision over the past
few decades, with diversified potential applications such as video surveillance, autonomous
driving and robotics. Nevertheless, the majority of existing detectors focus on color images
only, and they probably fail to work under insufficient illumination conditions, e.g., night-
time.

Long-wavelength infrared (thermal) images provide an alternative choice to address this
challenge. Thermal cameras capture the radiated heat of objects, thus they can present clear
human silhouettes even in absence of natural light, yet they lose detailed visual characteris-
tics (e.g., color and texture) that often presented by color images. This makes color images
and thermal images complementary with each other by nature. With the introduction of the
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KAIST Multispectral Pedestrian Benchmark [16], multispectral pedestrian detection has at-
tracted increasing attention from the computer vision community [7, 14, 17, 18, 19, 26, 29].
Effectively fusing multispectral data for pedestrian detection is a non-trivial task. We cre-
ate a human baseline and the results indicate that even the current state-of-the-art detectors
[14, 18, 19] lag behind human performance by a wide gap. Therefore, there is still a large
potential to improve the detection performance by better leveraging multispectral images.
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47.24% ACF+T+THOG
26.15% Halfway Fusion
21.67% Fusion RPN
16.53% Fusion RPN+BF
16.22% IAF R−CNN
15.78% IATDNN+IASS
11.63% Ours: MSDS−RCNN
(original training annotations)
 7.49% Ours: MSDS−RCNN
(sanitized training annotations)
 3.09% Ours: Human baseline

Figure 1: We have made efforts to narrow
the gap between detection methods and hu-
man baseline (on the KAIST test set). Our
method surpasses existing state-of-the-arts
by a large margin (26% relative). About one
third of the error is attributed to the annota-
tion noise, which can be further eliminated
using our sanitized training annotations.

In this work, we investigate how to ef-
fectively and efficiently detect pedestrians by
leveraging RGB-thermal pairs with convolu-
tional neural networks (convnets). We pro-
pose a network fusion architecture for multi-
spectral pedestrian detection, which is denoted
as the Multispectral Simultaneous Detection
and Segmentation R-CNN (MSDS-RCNN).
Specifically, MSDS-RCNN consists of two
multispectral fusion networks, among where
the former network is responsible for gener-
ating candidate proposals and the latter net-
work focuses on handling hard examples. Re-
cent work [4, 12, 24] has shown that seman-
tic segmentation is beneficial for RGB based
pedestrian detection. We not only confirm
their conclusions on multispectral pedestrian
dataset but also reveal that incorporating se-
mantic segmentation task in proposal stage is
credited for the majority of the performance
improvement.

The noise of training annotation is a nonnegligible factor that could lead to performance
degeneration. We manually sanitize the KAIST training annotations. Taking MSDS-RCNN
as a baseline, we examine the effects of different kinds of training annotation errors, includ-
ing imprecise localization, misclassification and misaligned regions.

Our major contributions are fourfold: First, we introduce an effective and efficient ar-
chitecture, called MSDS-RCNN, for multispectral pedestrian detection. Second, we create a
human baseline for the KAIST dataset to reveal the gap between current detectors and human
performance. Third, we provide a sanitized version of training annotations for the KAIST
dataset and based on which, the effects of training annotation quality are evaluated. Last but
not least, our MSDS-RCNN pushes the state-of-the-art performance on KAIST dataset from
15.78% to 11.63% in terms of log-average miss rate (26% relative reduction). Using the
sanitized training annotations, the detection performance can be further boosted to 7.49%.

2 Related Work
Color Image based Pedestrian Detection: As a canonical case of general object detection,
pedestrian detection is one of the hot topics in computer vision [3, 25]. The majority of past
work for pedestrian detection is based on color image and recent top performing detectors are
typically variants of Fast/Faster R-CNN [13, 27]. MS-CNN [6] and SAF-RCNN [20] han-
dled the scale-variance problem via specifically designed multi-scale sub-networks. Zhang
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et al. [30] showed that the under-performance of Faster R-CNN in pedestrian detection task
is attributed to the Fast R-CNN classifier due to insufficient input resolution and lack of boot-
strapping strategy. Competitive results can be achieved by cascading boosted forest [2] on
top of the high-resolution RPN feature maps, denoted as RPN+BF. Zhang et al. [31] revealed
that after proper adaptations such as pedestrian-specific RPN scales and input up-scaling, a
plain Faster R-CNN gained substantial improvement and almost matched a state-of-the-art
detector. F-DNN [12] and SDS-RCNN [4] used separate downstream classifiers that do not
share weights with the proposal network, so that they can better handle hard examples. In
this paper we will explore this insight in the scope of multispectral pedestrian detection.
Multispectral Pedestrian Detection: Since the release of the KAIST Multispectral Pedes-
trian Benchmark [16], there is a growing interest in pedestrian detection leveraging aligned
color and thermal images. The initial baseline ACF+T+THOG was extended from the ag-
gregated channel features (ACF) [11] and augmented with thermal channels. Wagner et al.
[29] adopted ACF+T+THOG to generate region proposals, which were then re-scored by a
convnet. Choi et al. [7] first used separate RPNs to generate proposals on color and thermal
images and then evaluated them with support vector regression (SVR). A later extension [26]
reformulated shallow modules as network architectures so that it can be trained end-to-end.
Liu et al. [17] explored different network fusion architectures developed from Faster R-CNN
and discovered that halfway fusion produced best performance. König et al. [18] extended
RPN+BF to multispectral pedestrian detection and proposed Fusion RPN+BF. Almost at
the same time, [14, 19] proposed illumination-aware fusion architectures that fused the out-
puts from color/thermal sub-networks or day/night sub-networks by a illumination-aware
weighted function. In this work, we do not incorporate such illumination-aware weighting
mechanism, yet our detection performance already surpasses theirs remarkably. Additional
improvement can be expected if we adopt such mechanism in our approach.
Segmentation for Pedestrian Detection: Object detection and semantic segmentation are
two highly correlated tasks and recently researchers have explored utilizing semantic seg-
mentation for pedestrian detection. Since many pedestrian datasets do not provide segmenta-
tion masks, initial attempts [9, 12, 15, 24, 31] obtained segmentation using models pretrained
on segmentation datasets such as Cityscapes [8], MS-COCO [22] and CamVid [5], and then
took the generated masks as additional cue for inference. Recent work [4] resorted bounding
box annotations of pedestrians as weak segmentation mask supervision, thus segmentation
and detection tasks can be simultaneously trained by optimizing a joint loss function.

3 Preliminaries

3.1 Pedestrian Benchmark

In this work we focus on the KAIST dataset [16], which contains 95,328 aligned color-
thermal image pairs, with manual annotations amount to a total of 103,128 bounding boxes
covering 1,182 unique pedestrians. Following the method presented in [19], we sample
images every 2 frames from training videos, exclude heavily occluded, truncated and small
(< 50 pixels) pedestrian instances, and finally obtain 7,601 training images. The test set
contains 2,252 images sampled every 20th frame from videos, among which 1,455 images
are captured during daytime and the other 797 images are during nighttime. For evaluation,
we strictly follow the reasonable setting provided by the KAIST benchmark, and measure the
log-average miss rate (MR) over the range of [10−2, 100] false positives per image (FPPI).
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Since the original annotations of the test set contain many problematic bounding boxes, we
use the improved annotations provided by Liu et al. [23] to enable a reliable comparison.

3.2 Human Baseline
Before delving into our methodology, we try to figure out how much potential is a detector
expected to improve. To this end, we construct a human baseline by asking human annota-
tors to ‘detect’ on the KAIST test set, which can be viewed as a perfect detector. Considering
that existing detectors are based on single image (color-thermal pair), we present frames in
random order to the human annotators so that surrounding or temporal information is in-
accessible. Since pedestrian instances might be invisible in one modality, we ask human
annotators to double check both color and thermal images before drawing their detections.
As expected, human performance widely surpasses existing state-of-the-arts. At ~0.02 FPPI,
the current top performing detectors [14, 18, 19] produce 8× miss rate than human baseline
(see Figure 1), indicating the automatic detector still has a large potential to improve. The
superior of human performance owes to their priori knowledge, for example, a human anno-
tator can easily distinguish human figure sculptures from real persons. Detection algorithms
are expected to at least approach human performance.

4 Proposed Method
The proposed network architecture consists of two components: a multispectral proposal
network (MPN) and a multispectral classification network (MCN). The overview of the pro-
posed MSDS-RCNN is illustrated in Figure 2 and the details are explained below.

4.1 Multispectral Proposal Network
The MPN aims to generate candidate bounding boxes covering the majority of ground-truth
pedestrian instances, by leveraging the information from both color and thermal modalities.
Consequently, the generated proposals inevitably contain a large portion of false positives,
which will be addressed by the subsequent MCN.

As shown in Figure 2, the MPN starts from two networks separately taking the color
image or thermal image as input, which are based on the VGG-16 [28] architecture with
fully connected layers removed. We fuse the two networks halfway, immediately after their
third convolutional blocks, obtaining a merged stream with a balance between fine visual
details and semantic information. Network fusion is conducted by first concatenating the
feature maps and then reducing dimension using Network-in-Network (NIN) [21], so that
the subsequent layers in the VGG-16 architecture can be reused. We do not truncate the
original color stream and thermal stream during training phase, since they can be used to
provide more diversified proposals for training the subsequent MCN. We further remove
the fourth pooling layer to provide a finer feature stride of 8, which is shown beneficial for
handling small instances [17, 31]. For each of color stream, thermal stream and merged
stream, we build a standard proposal module on the top of each conv5_3 layer in VGG-
16 architecture, which consists of a 3×3 intermediate convolutional layer followed by two
sibling 1×1 convolutional layers for bounding box regression and classification respectively
[27]. The anchors are tailed for pedestrian detection as follows. We split the full scale range
of training data into 8 quantile bins and use the resulting 9 endpoints as RPN scales. Besides,
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Figure 2: Overview of the proposed MSDS-RCNN.

we use a fixed aspect ratio of 0.41 following [30]. An anchor is assigned a positive label if it
has an Intersection-over-Union (IoU) higher than 0.5 with any ground-truth box. Otherwise,
we assign it a negative label. Additionally, a segmentation module is also added to the top of
each conv5_3 layer, which is a single 1×1 convolutional layer.

The MPN is thus trained by minimizing the following joint loss function with nine terms:

L=λ1Lcolor
MPNcls +λ2Lthermal

MPNcls +λ3Lmerged
MPNcls

+λ4Lcolor
MPNbbox +λ5Lthermal

MPNbbox +λ6Lmerged
MPNbbox

+λ7Lcolor
MPNseg +λ8Lthermal

MPNseg +λ9Lmerged
MPNseg

(1)

where the first six components remain the same as the PPN loss defined in Faster R-CNN
[27], and the last three components are the pixel-level loss introduced by [24]. Let Gx,y, Px,y
respectively represent the ground-truth and predicted segmentation masks, the segmentation
loss is computed as: Lseg = 1

H×W ∑(x,y) l(Gx,y,Px,y), where H and W denote the size of the
feature map and l is the cross-entropy loss function. In our experiments, we set all λi = 1.

During inference, we only use the fusion stream to generate pedestrian candidates, as
it remarkably speeds up the testing process without obvious performance degradation (see
Section 5.3 for details).

4.2 Multispectral Classification Network
As a subsequent stage of the MPN, the MCN is designed to re-score the proposals generated
by the MPN and it particularly focuses on handling hard examples.

Pedestrian candidates generated by the MPN with confidence score greater than 0.01 are
passed to the MCN and those lower than 0.01 are filtered, for both training and inference
phases. Following [4], we pad each candidate proposal by a factor of 0.2 on all sides to
incorporate contextual information and avoid partial cropping. For each proposal, we scale
it to a fixed size before taken as input for the MCN.

To construct the MCN, we start with two separate networks based on VGG-16, each
takes the cropped candidate regions of color image or thermal image as input. Then we
fuse the two networks halfway, as we performed in the MPN. On top of each FC7 layer in
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color stream, thermal stream and merged stream, an output layer is built for binary proposal
classification. A proposal is assigned a positive label if it has an IoU higher than 0.7 with
any ground-truth box. Otherwise, we assign it a negative label. Also, a segmentation module
is added to each conv5_3 layer, as we did in the MPN. The final loss for the MCN is thus
computed as:

L=λ1Lcolor
MCNcls +λ2Lthermal

MCNcls +λ3Lmerged
MCNcls

+λ4Lcolor
MCNseg +λ5Lthermal

MCNseg +λ6Lmerged
MCNseg

(2)

where the first three components are the classification loss and the last three components
are the pixel-level segmentation loss averaged on batch instances. We set all λi = 1 in our
experiments.

For efficiency purpose, we remove the fifth pooling layer from the VGG-16 architecture,
modify the filter size of the fourth pooling layer to 2× 1 and then adjust the input size to
112×56. During inference, we take top K proposals as input to further reduce computational
cost. We should mention that if no more than K proposals generated from the MPN exist
after filtering by the confidence threshold of 0.01, we take the remaining proposals as input.

Since color and thermal modalities exhibit different visual features, it is expected that the
classification characteristics from color, thermal and merged streams to be complementary
when fused. Moreover, as the MPN and the MCN is designed for handling general cases
and hard examples respectively, the classification results from the MPN and the MCN are
also complementary. Therefore, we fuse the classification scores from different stages and
modalities. Given the predicted 2-class scores from the three streams of MCN: Scolor

MCN =
{cc

0,c
c
1}, Sthermal

MCN = {ct
0,c

t
1}, Smerged

MCN = {cm
0 ,c

m
1 }, as well as the ones from the MPN: SMPN =

{cp
0 ,c

p
1}, the final classification score is obtained via the softmax function:

c f
1 =

e(c
p
1+cc

1+ct
1+cm

1 ))

e(c
p
0+cc

0+ct
0+cm

0 ))+ e(c
p
1+cc

1+ct
1+cm

1 ))
(3)

5 Experiments

5.1 Implementation Details
The proposed MSDS-RCNN is implemented in the Tensorflow [1] framework. The training
process contains two main stages and we adopt the image-centric training scheme. In the first
stage, we train the MPN using SGD with a momentum of 0.9 and a weight decay of 0.0001.
For each image, we randomly sample 120 anchors with the ratio of positive and negative
ones as 1:5. The MPN model is initialized with a VGG-16 model pretrained on the ImageNet
dataset [10]. We start training with a learning rate of 0.001, divide it by 10 after 4 epochs,
and terminate training after 6 epochs. In the second stage, we train the MCN using almost the
same setting as the MPN. The MCN model is initialized with the MPN model generated in
the first stage. For each image, we randomly sample 60 proposals generated from the MPN
with the ratio of positive and negative ones as 1:2. During inference, we set input image scale
S = 600 pixels for the MPN and the number of proposals K = 50 for the MCN, considering
the speed/accuracy trade-off (see Section 5.3 for explanations). Since semantic segmentation
masks are unavailable in the KAIST dataset, we use pedestrian bounding box annotations as
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Figure 3: Comparisons of detection results reported on the test set of KAIST dataset, in
terms of Reasonable-all (left), Reasonable-day (middle), and Reasonable-night (right).

weak segmentation ground-truth masks following [4]. We consider the ‘person’, ‘person?’
and ‘people’ categories in the KAIST dataset as foreground, and the remaining classes as
background. We report the averaged performance after repeating the experiments for 5 times.

5.2 Comparisons with State-of-the-arts

We evaluate the proposed MSDS-RCNN on the test set of KAIST, compared with Halfway
Fusion [17], ACF+T+THOG [16], Fusion RPN [18], Fusion RPN+BF [18], IAF R-CNN
[19] and IATDNN+IASS [14]. We also implement two single modality baselines for com-
parison, denoted as Color and Thermal. For implementation, we simply remove layers in
the MSDS-RCNN model and corresponding components in the loss function that involve the
other modality, then train a single-modality model using the identical procedure.

Figure 3 compares the experimental results, in terms of MR under reasonable setting. It
can be observed that MSDS-RCNN outperforms all existing methods and single-modality
baselines by a large margin, both on daytime images and nighttime images. IATDNN+IASS
is the best among existing detectors, with 15.78% MR. With the proposed method, we obtain
11.63% MR, improving the current state-of-the-art by 26% relative reduction of the error.
Moreover, the efficiency of our method also surpasses IATDNN+IASS, with 228 ms/image
vs. 250 ms/image on runtime with a single NVIDIA Geforce Titan X GPU.

5.3 Ablation Studies

This subsection is devoted to investigating the effectiveness of different design choices.
Effect of semantic segmentation: Table 1 compares the performance of enabling or dis-
abling the segmentation supervision in the networks. The baseline that does not use the
segmentation supervision obtains 13.59% MR. By introducing the segmentation supervision
in both the MPN and the MCN, the detection performance improves to 11.63% MR, with
14% relative reduction of the error, indicating that the segmentation supervision is also ben-
eficial for multispectral pedestrian detection. We also compare the effect of introducing the
segmentation supervision in the MPN or the MCN. In this case, we enable the segmentation
supervision in one network and disable the other. It can be observed that in both cases we
obtain performance improvement, but infusing segmentation in the MPN brings consider-
ably greater impact than that in the MCN (12.00% vs. 13.03%). We suppose this can be
attributed to the coarse bounding box annotations in the KAIST dataset, which can cause
more inconsistence when handling segmentation masks locally in the MCN.
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Supervision Detection performance (MR)
MPN MCN Reasonable-all Reasonable-day Reasonable-night

13.59% 11.95% 16.96%√
12.00% 11.10% 14.14%√
13.03% 11.74% 15.65%√ √
11.63% 10.60% 13.73%

Table 1: Effectiveness of the segmentation supervision.

Effect of score fusion: As illustrated in Table 2, combining the merged stream with color
stream and thermal stream pushes the performance from 14.02% MR to 11.95% MR. This
phenomenon reveals that although the merged stream makes use of color and thermal infor-
mation, the classification characteristics of color stream and thermal stream are still comple-
mentary to the merged stream. The scores from the MPN is also complementary, combining
it slightly boosts the detection performance to 11.63%.

MPN
MPN Detection performance (MR)

Color Thermal Merged Reasonable-all Reasonable-day Reasonable-night√
18.88% 16.63% 22.89%√
24.32% 18.43% 36.28%√
22.50% 24.56% 17.76%√
14.02% 13.78% 14.54%√ √ √
11.95% 10.99% 13.83%√ √ √ √
11.63% 10.60% 13.73%

Table 2: Effectiveness of the score fusion scheme.

Speed/accuracy trade-off: Finally we evaluate the efficiency of the method. The runtime of
the MPN is varied by the scale of input image, while that of the MCN depends on the number
of input proposals. Figure 4 compares the performance using different input scales and
numbers of proposals. We also compare the effects of using only the merged stream (denoted
as ‘Merged’) and using all three streams (denoted as ‘All’) in the MPN to generate proposals.
Generally, the larger input scale or more proposals bring performance improvement but add
more computational cost. Besides, using ‘Merge’ proposals typically obtains comparable or
even better performance than ‘All’ proposals. Considering the speed/accuracy trade-off, we
adopt 600 input image scale for the MPN, ‘Merge’ proposal mode and 50 proposals for the
MCN, which results in a process speed of 228 ms/image.

5.4 Impact of Training Annotation Noise
The annotation noise in the KAIST dataset is a vital factor that could affect the detection
performance. The original annotations of KAIST dataset contain many problematic bound-
ing boxes, such as missing annotation and incorrect labeling. Hence, Liu et al. [23] provided
improved annotations of KAIST test set to enable a reliable evaluation. As revealed by our
previous technical report [19], there is a big difference (>15%) in regard of MR value be-
tween using original and improved testing annotations. Similarly, the annotation noise in the
training data would lead to error-prone optimizing process.

To study the effects of annotation noise, we create a sanitized version of KAIST training
annotations. Since annotating the whole training data is time-consuming (95,328 frames),
we first filter the training images using the original annotations and obtain 7,601 valid frames
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Figure 4: Effect of MPN input scale, number of regions and proposal mode (left: All, right:
Merged) on log-average miss rate (solid lines) and GPU inference time (dotted).

(same protocol as described in Section 3.1). Then we carefully re-label all these 7,601 frames
to provide a high quality version of ground-truth annotations. The annotation errors we
corrected can be divided into three categories as follows:

1) Imprecise localization: In the original annotations, there are many annotated bound-
ing boxes that do not well match the real regions of person instances. The most common
case is using a obviously larger box to annotate a small instance. We correct this kind of
error so that each instance is tightly bounded by a box (see Figure 5 (left)).

2) Misclassification: The corrected misclassification cases are those assigning an incor-
rect category or occlusion state to an person. The cases also include missing annotations,
i.e., incorrectly labeling a person as background (see Figure 5 (middle)).

3) Misaligned regions: Although efforts have been made to ensure the paired color and
thermal images align both spatially and temporally, we find there still exist cases that the
multispectral images are not well aligned, particularly when the car is making a turn. For
such case, we separately label the bounding boxes in the color image and the thermal image,
and then check their IoU value. If they have an IoU lower than 0.5, we use the minimum box
that bounds both boxes to represent the instance and label it as ‘person?a’ so that it can be
ignored during training (see Figure 5 (right)).

Taking MSDS-RCNN as a baseline, we quantitatively study the effects of training an-

Figure 5: Examples of the corrected annotations. Green/yellow/red bounding boxes denote
non/partial/heavy-occluded pedestrians and white boxes denote ignore regions. Top row: the
original annotations. Bottom row: the sanitized annotations.
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Figure 6: Impact of different training annotations, compared on the test set of KAIST dataset,
in terms of Reasonable-all (left), Reasonable-day (middle), and Reasonable-night (right).

notation noise. Apart from comparing the performance using the original and the sanitized
annotations, we also examine the results using semi-sanitized annotations that excludes a
specific type of error correction (denoted as ‘Sanitized-ex1’, ‘Sanitized-ex2’ and ‘Sanitized-
ex3’ respectively). The experimental results are shown in Figure 6. Not surprisingly, using
the sanitized training annotations, the detection performance improves significantly from
11.63% MR to 7.45% MR, which indicates that the training annotation noise is responsible
for about one third of the inference error. For daytime images, using sanitized annotations
gains 24% relative error reduction, and the three types of annotation errors contribute quite
similar degrees. For nighttime images, using sanitized annotations obtains an amazing 56%
relative error reduction, the most of which is due to the correction of imprecise localization.

6 Conclusion
In this work, we make efforts to narrow the gap between automatic pedestrian detectors and
human performance. We present a unified convnet fusion architecture, denoted the MSDS-
RCNN, for person detection in multispectral data (color-thermal image pairs). We show that
jointly optimizing segmentation and detection tasks as well as effectively fusing the outputs
from different branches bring substantial performance improvement, leading to 26% relative
reduction of MR compared with existing state-of-the-art detector while remaining faster.
Since the original training data contains many problematic annotations, we further study the
impact of training annotation noise by carefully creating a sanitized version of ground-truth
annotations. We find that the sanitized training annotations benefit the detection performance
remarkably, especially for the nighttime images. We hope that future research can benefit
from the provided data.
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