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Abstract

CNNs have made a tremendous impact on the field of computer vision in the last
several years. For dense image classification tasks, CNNs usually assign a label to each
pixel individually. To enforce spatial coherence, CNNs are often combined with CRFs.
CRF optimization includes a regularization term that helps to obtain a spatially consistent
labeling. The weight of the regularization term, usually learned from the training data,
is fixed to the same value for all images. However, for optimal results, it is best to use
a different amount of regularization for each image depending on the image content and
the reliability of the label probabilities learned by CNN. We propose to learn the regu-
larization weight from training data for each individual image. To this end, we construct
a dataset where the optimal regularization weight for CRF optimization has been pre-
computed for each image. We use a CNN with a standard architecture, but the input is
tailored to our problem. The input is the image itself and the label probabilities produced
by CNN, since the regularization weight depends on both. The output of our CNN is
the regularization weight, which is then used with a CRF optimizer in a post processing
step. We test the effectiveness of our approach on the task of salient object segmentation.
We show that accuracy improvement can be achieved when using regularization weight
learned on per-image basis as opposed to using a single regularization weight learned for
all images in the dataset.

1 Introduction
Convolutional Neural Networks (CNNs) [12, 17, 20] have led to tremendous successes in
computer vision in the past several years, initially excelling in image classification tasks [17,
20]. Fully convolutional neural networks [25] proposed an efficient way to apply CNNs to
the problem of semantic segmentation, a task where each image pixel needs to be assigned a
label. Now CNNs are being used for a variety of pixel labeling problems, such as semantic
segmentation [10, 25], stereo correspondence [6, 34], optical flow [9], etc.

CNNs label each image pixel individually based on the estimated label probabilities. Due
to the overlap in the receptive fields, the label probabilities produced by CNN at nearby pixels
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Figure 1: The three leftmost images show the input image, the ground truth, and salient
object probabilities produced by a trained CNN. The rest of the images are the CRF segmen-
tation results as the regularization weight is increased. The segmentation outlined in green is
obtained with the learned regularization weight that has been fixed to the same value for the
whole dataset. The segmentation outlined in red is obtained with the regularization weight
estimated by our trained CNN for this particular image, based on image content and salient
object probabilities.

are correlated. However, the label dependencies are not explicitly modeled. Therefore the
results can exhibit a degree of spatial incoherence. Conditional Random Fields (CRFs) [16,
19] were designed specifically for the task of modeling pixel label dependencies. To improve
the coherence and therefore the accuracy of pixel labeling, CNNs are often combined with
CRFs. CRFs are either added as a post processing step [4, 10], or constitute a part of an
end-to-end trainable system [5, 14, 36].

When combining CRFs with CNNs, the probabilities learned by the CNN are converted
to the unary CRF terms, and then a learned or fixed pairwise CRF terms are added. The
pairwise terms impose some type of regularization. The result tends to be more spatially
coherent compared to using the unary terms alone, leading to an improved labeling accu-
racy. Regularization (pairwise) terms are added with a weight for controlling the strength
of the regularization. The regularization weight is either set by hand or learned through the
training data, or a combination of set-by-hand and learned parameters. In the prior work that
combines CNNs with CRFs, while the pairwise terms can depend on the content of an indi-
vidual image, such as edge contrast, the overall regularization weight is learned as a single
parameter with a fixed value for all database images.

For each individual image, however, the best result is achieved if the regularization
weight is adapted to that specific image, instead of using a single regularization weight that
works best for all the images in the dataset. This is because the optimal amount of regular-
ization required for a particular image depends on the image content, not just edge contrast,
and also on the quality of the unary terms produced by CNN for that particular image. If the
unary terms are noisy, the regularization weight should be increased. Assuming length regu-
larization, if there are finely structured objects in the image, regularization weight should be
decreased. There are other non obvious relationships between the best regularization weight
and the image content and CNN unary terms that one can attempt to learn.

In this paper, we propose to learn the optimal regularization weight from the image con-
tent and the unary terms. To learn the regularization weight, we use the CNN with a standard
architecture, referred to as weight-CNN. The input to weight-CNN is the color image and the
unary terms used in the CNN-CRF system, since the optimal regularization weight depends
on both. The output is the regularization weight for this particular image which we then use
during optimization in a CNN-CRF system.

Consider Figure 1. The first three images show the input image, the ground truth, and
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salient object probabilities produced by the CNN. The rest of the images show segmentation
results with an increasing regularization weight obtained by a CNN-CRF system. If one uses
the regularization weight that works best for all the images in the dataset, that is the best fixed
regularization weight, then the result outlined in green is obtained. If one uses our proposed
weight-CNN for learning the optimal regularization weight for each individual image, then
the result outlined in red is obtained. Notice that in this case, the salient object probability
map is rather noisy, and the object does not have fine structures. Therefore the learned
regularization weight for this particular image has a larger value than the fixed regularization
weight learned for the whole dataset.

We chose a simple application of salient object segmentation where the task is to segment
a salient object [7] from its background. We chose this application, in part, because an
efficient and globally optimal CRF optimizer is available in this case [1]. We use a simple
CNN-CRF approach, where the CRF is used as a post-processing step. We use the CNN
from [21] to learn unary terms for our CNN-CRF system. We also use the same CNN to
produce the input required by our weight-CNN. The overview of our proposed framework is
in Figure 2.

Since there is no prior work on learning the regularization weight in a supervised manner,
we first construct a training dataset. The examples are the color images coupled with the
unary terms learned by CNN from [21]. The labels are the optimal regularization weight,
estimated empirically from the ground truth saliency segmentations. We show that with our
learned regularization weight, we can improve the accuracy of CNN-CRF system, using the
standard F-measure metric used in saliency segmentation.

This paper is organized as follows. In Section 2 we discuss the prior work, in Section 3
we give details of our overall CNN-CRF system, in Section 4 we describe how we construct
our dataset, in Section 5 we give the architecture of our CNN for learning regularization
strength, in Section 6 we present the experimental results. Finally, conclusions are in Sec-
tion 7.

2 Prior Work

We are not aware of any prior work that uses deep learning for estimating regularization
weight for CRF optimization. However there is prior work on parameter learning for CRFs,
and prior work on combining CRFs with CNNs. We review these in this section.

First we discuss the prior work on learning CRF parameters. One approach to CRF
parameter learning is to use the classical method of maximum likelihood estimation [18,
19, 22]. In the context of CRFs, though, maximum likelihood estimation is intractable and
various approximations, such as pseudo-likelihood are used instead. These construct local
approximations instead of true global distributions, and have no quality guarantees. Instead
of using local approximations, in [27] they propose using approximate global distributions
based on the most-probable-explanation principle [8] with the hope of obtaining more re-
liable estimates. Still, a single regularization weight is estimated for the whole dataset, as
opposed to on per-image basis, which is our goal.

In [35], they learn CRF parameters using statistical estimation based on expectation max-
imization (EM) in the context of the stereo correspondence application. Their approach does
learn parameters per image. However, it is computationally intensive, as the proposed EM
procedure has to be run for multiple iterations.
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There are also methods for learning CRF parameters in the context of structured learn-
ing [29, 30]. These methods can be ef�cient provided an ef�cient CRF optimizer is available.
However, they learn a �xed regularization weight parameter for all images in the dataset.

In [26], they use an empirical approach to choosing the best regularization weight for
each image individually. First they train an AdaBoost [11] classi�er that assigns a “good-
ness” score to a segmentation. Given a new image to segment, they run CRF optimization for
different regularization weight values and apply the trained classi�er to each segmentation.
They chose the segmentation with the best “goodness” score as their �nal result. While in-
teresting, this approach is costly since CRF optimization has to be performed multiple times
and the classi�er for the segmentation result has to be run several times as well.

We now turn to reviewing the approaches for combining CNNs with CRFs. The simplest
and earliest approaches apply CRF in a post processing step [4, 10]. The probabilities for
class labels learned by a CNN are converted into the unary CRF terms. Then a standard
CRF optimization algorithm, such as in [3] or [16] is used to obtain the �nal labeling. This
approach is simple but does not support end-to-end training.

In order to support end-to-end training, some methods implement a CRF optimizer inside
the neural network. In [36], they implement mean-�eld inference [15], a popular optimizer
for fully-connected CRFs, as a Recurrent Neural Network (RNN). This method is limited to
mean �eld inference, which has been shown an ineffective optimizer [31].

The methods in [5, 14] use a structural learning framework. The unary and/or pairwise
CRF terms are modeled with CNN-computed features. This approach supports end-to-end
training, but the loss function is dif�cult to optimize and various approximations have to be
used.

3 CNN-CRF System

We use a simple CNN-CRF combined system, where a CRF is used to post process CNN
results. Our system is outlined in Figure 2. We use the CNN from [21] to learn saliency
probabilities, which we refer to as “saliency-CNN”. The input to saliency-CNN is a color
image, and the output is the probability of each pixel being salient. The probability map
from saliency-CNN and the input image serve as an input into weight-CNN. The probability
map is concatenated as the fourth channel to the color image. The output of weight-CNN is
the regularization strength which we namel , see Eq. (2). The input image, saliency prob-
abilities, and lambda are the input to the CRF, which then produces the �nal segmentation.
The CRF optimizes the energy in Eq. (1), explained below.

We use the binary (two labels) energy function proposed in [1] for segmenting a salient
object from its background. LetP be all the image pixels, andxp 2 f 0;1g the label assigned
to pixel p. Herexp = 0 means pixelp is assigned to the background,xp = 1 means pixelp
is assigned to the salient object. Letx = ( xp j p 2 P ) be the vector of all pixel assignments.
The CRF energy is de�ned as

f (x) = å
p2P

fp(xp) + å
p;q2P

wpq � [xp 6= xq]: (1)

The unary termfp(xp) is the cost of assigning pixelp to labelxp. It is modeled as negative
log probability of the salient (ifxp = 1) or background (ifxp = 0) object. These probabilities
are obtained by training saliency-CNN. The pairwise termwpq � [xp 6= xq] is the penalty one
pays whenever pixelsp;q are not assigned to the same label. We setwpq to be inversely
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Figure 2: Our CNN-CRF combined system, see text for description.

proportional to the distance between the color vectors of pixelsp andq, weighted by the
regularization weight parameterl

wpq = l � exp
�

�
jjCp � Cqjj2

2s 2

�
: (2)

We use a standard 4-connected CRF. This CRF energy regularizes a labeling by encouraging
a shorter boundary length. The larger the value ofl , the stronger the regularization in�uence
in comparison to the unary terms. The main goal of this paper is to learn how to set the best
value for parameterl , tailored to each individual image. The optimum labeling minimizing
the energy in Eq. (1) can be found ef�ciently via the minimum cut algorithm [2].

4 Dataset Construction

Since there is no prior work on learning the regularization weightl in Eq. (2) in a super-
vised manner, we �rst construct a training dataset. The value ofl controls the regularization
strength and the smoothness of the segmentation boundaries. An appropriatel value encour-
ages boundary smoothness and suppresses noise caused by inaccurate unary terms. However,
the details on the object boundary might be lost ifl is too large. On the contrary, if thel
value is too small, too much noise remains in the �nal segmentation. Thus, for each image,
the value ofl in Eq. (2) that gives the best visual result is usually different. We need to de-
termine this bestl value as the correct label or `ground truth' for each image in our dataset.
Notice that our training dataset is speci�c to the energy and the unary terms in Eq. (1). The
training examples are the color images coupled with the unary terms learned by the CNN,
and the correct labels are the optimall 's.

We start with the standard salient segmentation dataset [24]. For each image, we use the
CNN from [21] to obtain a pixelwise probability map for the salient object. The saliency
probability map is converted to the unary terms for Eq. (1) by taking negative logarithm.

Next, for each imagei in the dataset, we need to know the value ofl in Eq. (2) that
gives the best F-measure on imagei, which we refer to asl �

i . We compute the values of
l �

i empirically. That is, for each imagei, we perform optimization of the energy in Eq. (1)
for a range ofl values. For each segmentation result, we compute the F-measure, which
is a standard performance measure on the saliency benchmarks. Finally, we set thel value
giving the best F-measure to bel �

i . We call l �
i for imagei as the `ground truthl '. In
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Figure 3: The number of images assigned to each possible value ofl � for MSRA10K dataset

order to limit the search space, we �x the set ofl values to explore to beL = f 2i j i 2
f� 2; � 1; :::;17gg. We call setL thel -spectrum.

We choose the lower and upper limits ofl -spectrum empirically. We observe thatl �

rarely drops below 2� 2 and rarely rises above 217. We decide that the interval between each
value of l in our spectrum should grow exponentially because therelative error seems to
affect our results more thanabsoluteerror. For example, the difference betweenl = 10 vs
l = 11 seems to matter far more than that ofl = 10000 vsl = 10001. The distribution
of empirically estimatedl � values computed for the MSRA10K dataset [24] is shown in
Figure 3.

5 Weight-CNN Architecture

In this section, we explain the architecture of weight-CNN for learning the optimal regu-
larization weightl for each image. We exploit two regression network architectures that
are both alterations of the VGG-16 nets [28]. We adopt the main features of the VGG-16
network structure because VGG-16 and its variations have shown a remarkable performance
in various vision tasks other than object classi�cation for which VGG-16 was developed.
Their recent success in semantic segmentation demonstrated the expressive power and the
potential of the VGG-16 structure to solve other vision tasks.

We modify the VGG-16 net to our weight-CNN by reducing the number of neurons in
the output layer from the number of classes (for classi�cation purposes) to one which outputs
a real scalar value serving as the exponent of the predicted regularization weight value. We
take the number of neurons in the fully connected layers as a hyperparameter to tune during
training. We preserve the 5 max pooling layers with stride 2 in the original VGG-16 net. This
is to reduce the feature map resolution in the hope of extracting more compact, positionally
invariant feature representations. Each convolutional layer has 3� 3 kernels with stride 1,
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(a) Full-WCNN (b) Trimmed-WCNN
Figure 4: The architecture of regression networks.

and the number of kernels grows exponentially between each convolutional group as in the
VGG nets. Zero padding is employed before every convolutional layer for easy calculation
of changes in feature map dimension.

One difference between our two networks is the number of convolutional layers between
each pooling layer. As shown in Figure 4 (a), the full weight-CNN network (Full-WCNN)
has two to three convolutional layers in each stage. A stage contains one or more convo-
lutional layers, followed by a batch normalization layer, ReLU activation layer and a max
pooling layer. Meanwhile, for the trimmed weight-CNN network (Trimmed-WCNN) in Fig-
ure 4 (b), there is only one convolutional layer in each stage. Additionally, in Full-WCNN,
the two fully connected layers have the same number of neurons; meanwhile, in Trimmed-
WCNN, the second fully connected layer has half as many neurons as in the �rst fully con-
nected layer. A single neuron is attached after the fully connected layers to generate a real
number output, which is used to compute the predicted regularization weight.
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Trimmed-WCNN is slimmer than Full-WCNN in terms of the number of trainable weights,
which forces Trimmed-WCNN to learn more ef�ciently and signi�cantly reduces the poten-
tial over�tting problem. The slimness also reduces training time. Holding the other con�g-
urations consistent, Trimmed-WCNN networks generally needs two-thirds as much time to
train as Full-WCNN.

The networks are trained on the mean squared logarithmic error (MSLE) calculated on
the ground truth values ofl � and the network predictions. Letl �

i be the ground truth label
for imagei and letfq (xi) be the raw network output. Then we use the following loss function
on the batch ofn images

LMSLE =
1
n

n

å
i= 1

(log(l �
i ) � log( fq (xi))) 2: (3)

We choose the mean squared logarithmic error instead of mean squared error because we
intend to penalize the relative error instead of the absolute error, especially considering that
our l � values are obtained from a search with exponential increment.

6 Experimental Results

We use the MSRA10K [24] saliency dataset for weight-CNN training. It provides pixel-
level saliency labeling for 10,000 images, and is one of the largest saliency datasets with
pixel precise ground truth.

We augment the MSRA10K dataset to include the per-image based optimal regulariza-
tion weight. All color images are resized to size 256 by 256 using bilinear interpolation, and
the ground truth images are resized to the same dimensions using nearest neighbor interpo-
lation. Then, we randomly partition the augmented MSRA10K dataset into the training set,
validation set and test set, and each containing 8;000, 1;000 and 1;000 images respectively.
During the training stage, the mini-batch size is set to 20. We trained weight-CNN for 100
epochs and took the network at a checkpoint that resulted in the best F-measure on validation
data. This usually occurred before 50 epochs were reached. The networks were trained with
the Adam [13] optimizer to minimize a loss function consisting of MSLE loss andL2 weight
decay with a decay factor of 5� 10� 4. Learning rate was set to 10� 3.

We focus our result analysis on F-measure, a standard evaluation metric for saliency
segmentation, which is de�ned as

Fb = ( 1+ b2) �
precision� recall

(b2 � recall) + precision
; (4)

where we setb2 = 0:3, as standard. The precision and recall are calculated astp
tp+ fp

and
tp

tp+ fn
respectively, wheretp, fp, and fn stand for true positives, false positives, and false

negatives respectively.
We now compare the performance of CNN-CRF system using the per-imagel learned

with weight-CNN and performance of CNN-CRF system usingl �xed for the whole dataset.
We call l �xed for the whole datasetl f ixed. To �nd l f ixed, we go over all possible values
in L, de�ned in Section 4, and for each value compute the average F-measure on the train-
ing dataset. Then we choosel f ixed as the value maximizing the average F-measure. For
the MSRA10K dataset,l f ixed = 64. Table 1 demonstrates the comparison results. The �rst
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Figure 5: Some example results. From left to right: original image, segmentation produced
by saliency-CNN, segmentation of CNN+CRF with the same regularization weightl for all
images, segmentation of CNN+CRF withl learned by our weight-CNN, ground truth.


