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Abstract

Unveiling the image structure and dense correspondence under the haze layer remains
a challenging task, since the scattering effects cause image features to be less distinctive.
In this paper, we introduce a deep network that simultaneously estimates a clear latent
image and disparity from a hazy stereo image pair. To this end, inspired by a physical
model of hazy image acquisition, we propose a dehazing loss function which serves as an
additional cue for establishing dense correspondence. We show that stereo matching and
dehazing can be synergistically formulated by incorporating depth information from haze
transmission into the stereo matching process, and vice versa. As a result, our method
estimates high-quality disparity for scenes in scattering media, and produces appearance
images with enhanced visibility. We quantitatively evaluate the proposed method on syn-
thetic datasets and provide an extensive ablation study. Experimental results demonstrate
that our approach outperforms the recent state-of-the-art methods on both dehazing and
stereo matching tasks.

1 Introduction
Dense depth information is indispensable to computer vision applications, including 3D
reconstruction [28], object recognition [10], intrinsic image decomposition [4], and au-
tonomous driving for vehicles [8]. Although active 3D scanner such as LiDAR and struc-
tured light can be used for direct depth acquisition, sensing depth from stereo camera is a
more cost effective solution [19]. Specifically, for a pixel x= (x,y) in left image, its corre-
spondence may be found at location x̃= (x− d,y) in the right, where d is often referred to
as disparity. Since depth is inversely proportional to d with calibration parameters, a stereo
matching method is instead targeted for generating dense disparity [27]. Stereo matching has
been traditionally cast as an energy minimization problem with several stages of optimiza-
tion [21, 27]. Nonetheless, it is difficult to select the correct disparity at ill-posed regions,
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Figure 1: (From left to right) Clear left of the stereo pair, hazy left, depth maps with clear
and hazy stereo pairs. We use the stereo algorithm of [20] trained with clear stereo pairs.

i.e., occluded and texture-less regions. The correspondence cannot be decided for a pixel ap-
pearing in one image but occluded in the other. While for texture-less regions, many possible
correspondences can exist leading to systematic errors in disparity estimation. Taking advan-
tages of a large amount training data and more efficient computing hardware, recent methods
formulate stereo matching as a supervised learning task [20]. Stereo matching with convolu-
tional neural networks (CNNs) achieves significant gain compared to traditional approaches
in terms of both accuracy and speed [19, 20, 31].

In outdoor scenes, we are often faced with opaque objects covering over more distant
regions of an image. The presence of tiny particles in the atmosphere causes the deflections
of light, which travels from objects to camera. This physical phenomenon is known as haze
or fog, and makes the appearance to be attenuated along its path [16]. However, the current
stereo matching methods based on CNNs [19, 20, 31] are only designed for images captured
in clear weather. Consequently, bad atmospheric conditions present a significant difficulty in
disparity estimation as shown in Fig. 1. One reason for this is that hazy images are associated
with visibility decrease that causes image features to be less distinctive and confuses the
matching cost computation. In the best case, the existing methods [19, 20, 31] are correct
only up to a critical distance as the visibility is an exponentially decreasing function of depth
[16]. A naive solution is to apply dehazing and stereo matching algorithms sequentially, or
to fine-tune the CNNs with hazy images. We will show that such methods are marginally
helpful for stereo matching in scattering media.

While haze poses a challenge for stereo matching, it may provide a depth cue in the
gray level of far-away objects [3]. The depth cue from haze transmission is particularly
interesting since it is complementary to the stereo depth [3]. The former provides more
accurate depth ordering for remote objects1 [17], and the latter is more reliable for nearby
objects [12]. Thus, stereo matching also can help dehazing. Previous dehazing methods are
mainly designed to restore a single image, which is an under-constrained problem, i.e., there
exists a large number of valid solutions. This holds for every pixel and can not be resolved
independently at each pixel given a single image [5]. Recent techniques employ additional
heuristic assumptions, including dark channel prior [13] and maximum local contrast [29].
However, all of these can be fooled in sky regions or objects with saturated colors. It is known
that even rough depth information from single image can improve the dehazing performance
[5, 24]. A precise depth estimation from stereo image will reduce the ambiguity in dehazing.

In this paper, we devise a multi-task CNN that simultaneously predicts scene depth and
clear appearance from a hazy stereo pair. The key insight is that the depth cues from stereo
and haze transmission are complementary to each other. Building on top of two-stream CNN,
we enforce that depth information from stereo matching to be incorporated into the dehazing
process, and vice versa. This feature enables the underlying model to effectively predict
depth and dehazed images with high consistency and corresponding accuracy. Extensive
evaluations on synthetic dataset demonstrate the effectiveness and flexibility of the proposed

1Thicker haze is associated with larger distance [16].
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method. Finally, we illustrate some further examples of our model generalizing to real-world
scenes.

2 Related Work

2.1 Stereo matching

There is a large body of literature on stereo matching. Among various methodologies, we
review a few of them with emphasis placed on recent methods using CNNs. In early stage,
CNNs are used to measure the similarity between images patches. Han et al. introduced
a Siamese network which extracts features from a pair of patches followed by similarity
measure [11]. Similarly, Zbontar et al. [31] presented a series of CNN architectures called
MC-CNN for pairwise matching, and applied these in disparity estimation. Luo et al. [19]
proposed to learn a probability distribution over all disparity values. They replaced the con-
catenation and subsequent processing layers by a single product layer, measuring costs in less
than a second. The learned similarity metrics [11, 19, 31] outperform the traditional hand-
crafted ones, such as sum of absolute difference and normalized cross correlation. However,
a number of post-processing steps are still required to produce compelling results. More re-
cent works try to learn stereo matching in an end-to-end fashion by carefully designing and
supervising the CNNs. Mayer et al. [20] proposed the DispNet, where the network is trained
end-to-end using synthetically generated stereo pairs and the corresponding disparity. Pang
et al. [23] combined the DispNet and cascade residual learning to produce disparities with
more details. Kendall et al. [14] devised the GC-NET using 3D convolution and proposed
differentiable soft-argmin operation, which allows the network to be trained end-to-end with
sub-pixel accuracy. Yu et al. [30] realized the color-guided cost aggregation using CNNs,
and collaborated with the deep cost computation. All these methods, however, are designed
for images captured in clear scenes. Bad weather conditions reduce the quality of stereo
pairs, and introduce artifacts in disparity estimation.

2.2 Dehazing

Numerous methods have been proposed to solve the dehazing problem. Tan et al. [29] for-
mulated the image dehazing as Markov random fields (MRF), and obtained a clear image
by maximizing local contrast. Fattal assumed that a hazy scene can be divided into regions
of constant albedo, and inferred the transmission using such assumption [5]. Several heuris-
tic assumptions have also been made on natural images to estimate haze transmission. For
instance, the dark channel prior [13] imposes that patches of natural images contain very
low intensity in at least one color channel. The color-line prior [6] relied on the regular-
ity of natural images, where small patches typically exhibit one-dimensional distribution in
RGB color space. Recent methods adopt CNNs to extract haze-relevant features from a
single image. Ren et al. [24] proposed to use multi-scale CNN to estimate transmission
maps from hazy images directly. Cai et al. [2] proposed an end-to-end CNN model to es-
timate the transmission with novel BReLU activation function. Zhang et al. [32] devised
a densely connected architecture, and employed multi-level pyramid pooling for estimating
edge-preserving transmission maps. While these single image dehazing methods work to
some extent, they often regard nearby objects as far away ones with saturated color, and
introduce visual artifacts [17].
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2.3 Joint stereo matching and dehazing
The aforementioned methods treat stereo matching and dehazing as independent tasks, thus
ignoring their complementary relationship. In the literature, only a few works have been
devoted to solve stereo matching with hazy images. The most related work to ours is that
of Caraffa and Tarel [3]. They proposed a MRF model of the stereo matching and dehaz-
ing, which can be optimized iteratively with α-expansion. Roser et al. [25] iterated the
dense stereo matching and estimation of clear images according to the scattering equation.
The matting Laplacian filter was used to enhance the overall quality of disparity. Li et al.
[17] improved the data consistency term in multi-view stereo by explicitly modeling the ap-
pearance change due to the scattering effects. They further enforced the ordering consistency
between scene depth and hazy transmission at neighboring pixels. These attempts [3, 17, 25]
are conceptually similar to ours, but suffer from two main drawbacks. First, all methods are
inherently iterative, and rely on global optimization techniques such as multi-label graph cut
[1], leading to a huge computational overhead. Second, hand-crafted features are used to
measure the matching cost for stereo reconstruction. In contrast, our learned model directly
fuses the depth cues from stereo matching and dehazing, and produces stronger results.

3 Proposed Method
We denote by {IL, IR} left and right images of a stereo pair. It is assumed that {IL, IR} are
observed after perturbation of atmospheric scattering and optics. The images without such
perturbation will be denoted as JL and JR, respectively. The unknowns are disparity map D
aligned to left image and JL. Our goal is to fuse depth cues from stereo matching and haze
transmission to achieve a better reconstruction of {JL,D}. Before formulating our approach,
we give an overview of the scattering model that is used for hazy image generation [16].

3.1 Haze model
Haze is a phenomenon that results from the scattering of light causing an attenuation in the
appearance of scene. The effect of haze (atmospheric scattering) can be mathematically
modeled as follows [16]:

I(x) = J(x)T (x)+A(x)(1−T (x)), (1)

where A is the atmospheric light, and T is the medium transmission determining the portion
of light scattering. If the atmosphere is homogeneous, we can express the transmission as
T (x) = e−β z(x), where β is the scattering coefficient associated with the density of media,
and z is the scene depth. The clear image J can then be obtained in the inverse way:

J(x) =
I(x)−A(x)(1−T (x))

max(ε,T (x))
, (2)

where ε is a constant for the numerical stability. As a result, the task of dehazing can be
divided into two tasks: estimations of the transmission map T and the atmospheric light A.

3.2 Stereo Matching Network
The lessons of the previous works [14, 20, 23, 30] inspire us to employ CNN for disparity
estimation. Our Stereo matching network takes the hazy images {IL, IR} as input, and outputs
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A-Network

Layer Kernel Channel Input

cnv_A1 7x7 3 / 64 IL
cnv_A2 5x5 64 / 48 cnv_A1
cnv_A3 3x3 48 / 32 cnv_A2
cnv_A4 3x3 32 / 16 cnv_A3

Â 3x3 16 / 1 cnv_A4

T -network (Encoder)

Layer Kernel Channels In Out Input

cnv_t1a 7x7 3/32 1 2 IL
cnv_t1b 7x7 32/32 2 2 cnv_t1a
cnv_t2a 5x5 32/64 2 4 cnv_t1b
cnv_t2b 5x5 64/64 4 4 cnv_t2a
cnv_t3a 3x3 64/128 4 8 cnv_t2b
cnv_t3b 3x3 128/128 8 8 cnv_t3a
cnv_t4a 3x3 128/256 8 16 cnv_t3b
cnv_t4b 3x3 256/256 16 16 cnv_t4a
cnv_t5a 3x3 256/512 16 32 cnv_t4b
cnv_t5b 3x3 512/512 32 32 cnv_t5a
cnv_t6a 3x3 512/1024 32 64 cnv_t5b
cnv_t6b 3x3 512/1024 64 64 cnv_t6a

T -network (Decoder)

Layer Kernel Channels In Out Input

upcnv_t6 4x4 1024/512 64 32 cnv_t6b
iconv_t6 3x3 1024/512 32 32 {upcnv_t6,cnv_t5b}
upcnv_t5 3x3 512/256 32 16 iconv_t6
iconv_t5 3x3 512/256 16 16 {upcnv_t5,cnv_t4b}
upcnv_t4 3x3 256/128 16 8 iconv_t5
iconv_t4 3x3 256/128 8 8 {upcnv_t4,cnv_t3b}
upcnv_t3 3x3 128/64 8 4 iconv_t4
iconv_t3 3x3 128/64 4 4 {upcnv_t3,cnv_t2b}
upcnv_t2 3x3 64/32 4 2 iconv_t3
iconv_t2 3x3 64/32 2 2 {upcnv_t2,cnv_t1b}
upcnv_t1 3x3 32/16 2 1 iconv_t2

T̂ 3x3 16/1 1 1 deconv_ut_6_1

Table 1: Our A- and T -network architectures for dehazing. ‘Channels’ is the number of input
and output channels. ‘In’ or ‘Out’ is the downsampling factor relative to the input image.
‘{·,·}’ denotes the concatenation operator.

the disparity D aligned to the left image. We use the DispNetC-1D [20] (here “C-1D" means
that the network has a 1D correlation layer) as our baseline architecture. For a concise
presentation, the detailed architecture of DispNetC is omitted here (please refer to [20]). In
a nutshell, the two images {IL, IR} are processed separately up to second convolution layer.
The resulting activations are correlated horizontally to construct the cost volume. Disparity
values are then regressed from the cost volume using the following encoder-decoder network.
The original DispNetC [20] outputs disparity map at half the resolution of inputs. Differently,
we append extra upconvolution and convolution layers to obtain the disparity at the same size
of input images. We then follow the typical supervised learning paradigm and compute L1
loss between the estimate D̂ and the ground-truth disparity Dgt .

LD = ∑
x

∣∣D̂(x)−Dgt(x)
∣∣
1. (3)

The stereo matching network outputs disparity predictions at five different scales, which
double in spatial resolution at the subsequent scales [20].

3.3 Dehazing network

We also utilize CNNs to estimate the clear appearance J from hazy image I. The dehaz-
ing network takes a hazy image, and predicts the transmission T and atmospheric light A,
followed by clear image estimation using (2).

Architecture The architecture of our dehazing network is presented in Table 1. Our net-
work is inspired by the DispNet [20], but features some important modifications for the
dehazing. It consists of two modules: T -network and A-network for transmission and atmo-
spheric light, respectively. The T -network is the critical component of dehazing network,
being responsible for extracting depth information and relative haze level. We thus adopt
fully convolutional encoder (from cnv1a to cnv6b) and decoder (from upcnv6) architecture
for ensuring high-capacity. The encoder extracts a variety of multi-scale haze-relevant fea-
tures, and the decoder estimates scene transmission maps from these representations. We
use skip-connections [18] from the encoder’s activation blocks to compensate for informa-
tion loss during convolutions and pooling. The A-network has five convolutional layers with
7×7, 5×5, and 3×3 kernels. We design the A-network to have a compact parameterization
since the manifold of A is topologically much simpler than that of T . For both the networks,
we use the leaky rectified linear unit max(0.2x,x) (LReLU) as the pointwise nonlinearity.

Citation
Citation
{Mayer and Brox} 2016

Citation
Citation
{Mayer and Brox} 2016

Citation
Citation
{Mayer and Brox} 2016

Citation
Citation
{Mayer and Brox} 2016

Citation
Citation
{Mayer and Brox} 2016

Citation
Citation
{Long, Shelhamer, and Darrell} 2015



6 T. SONG ET. AL.: DEEP NETWORK FOR SIMULTANEOUS STEREO & DEHAZING

32
64

128
256 512 512 256

128
64

32 16

512 256
128

64
32 1632

64 128
256 512

1024 1024

2048

Skip

Skip
1-D Correlation

Weight Sharing

መ𝐼𝐿 = 𝑇𝐽𝐿 + (1 − 𝑇) መ𝐴

ℒ𝑚𝑜𝑑𝑒𝑙 = መ𝐼𝐿 − 𝐼𝐿 1

ℒ𝐷 = |𝐷 − 𝐷𝑔𝑡|1

𝐼𝐿

𝐼𝑅
𝐷

𝑇

መ𝐴

መ𝐼𝐿
ℒ𝐴 = | መ𝐴 − 𝐴𝑔𝑡|1 + 𝜆ℒmodel

ℒ𝑇 = |𝑇 − 𝑇𝑔𝑡|1 + 𝜆ℒmodel

(a)

(b)

(d)

(c)

(e)

(f)

Stereo Matching Network

Dehazing Network

3264 32 1648

Figure 2: Our full architecture for simultaneous stereo matching and dehazing.

Loss function We define the loss functions for dehazing network as follows:

LT = ∑
x

∣∣T̂ (x)−Tgt(x)
∣∣
1 +λLmodel, LA = ∑

x

∣∣Â(x)−Agt(x)
∣∣
1 +λLmodel, (4)

where T̂ and Â denote the estimated transmission map and atmospheric light, respectively.
λ > 0 is a balancing parameter. Note that the existing methods using CNNs train T - and
A-networks separately [32], or estimate A heuristically [2, 24]. These methods [24, 32] dis-
regard the correlation between transmission map and atmospheric light, and tends to amplify
the image noise. Differently, our dehazing network shares the forward model consistency
loss function Lmodel:

Lmodel = ∑
x

∣∣(J(x)T̂ (x)+ Â(x)(1− T̂ (x))
)
− I(x)

∣∣
1. (5)

The derivation is straightforward from (1). That is, we measure the sum of absolute error of
forward model consistency (1). Lmodel helps to back propagate errors to each sub-network
concurrently, and to avoid overfitting when training each sub-network individually. We will
demonstrate that our dehazing loss produces more consistent results with various haze levels.

To learn the parameters in T - and A-networks, we require the partial derivatives of the de-
hazing loss with respect to T̂ and Â. Since the input hazy image I is the convex combination
of J and A, we can easily derive the following derivatives:

∂LT

∂ T̂
= ∑

x

(
sgn(T̂ (x)−Tgt(x))+λτ (x)

(
J (x)− Â(x)

))
, (6)

∂LA

∂ Â
= ∑

x

(
sgn(Â(x)−Agt(x))+λτ (x)

(
1− T̂ (x)

))
, (7)

where τ(x) = sgn
((

J(x)T̂ (x)+ Â(1− T̂ (x))
)
− I(x)

)
. These derivatives, which can be

computed efficiently using point-wise operations, are further back-propagated onto T - and
A-networks. Note that after T̂ and Â are estimated by our dehazing network, we solve (2) to
obtain the clear appearance J.

3.4 Simultaneous stereo matching and dehazing
Full architecture We now explain our full architecture illustrated in Fig. 2 for simulta-
neous stereo matching and dehazing. We first use the two stream encoders to extract depth
cues from stereo matching and single haze transmission, as shown in Fig. 2(a) and (b). To
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Stereo Matching

Network Testing Img.
3PE (three-pixel-error) EPE (endpoint-error)

(Training Img.) FT3D [20] Driving [20] Avg. FT3D [20] Driving [20] Avg.

Clear 0.1598 0.2126 0.1786 2.8718 3.8793 3.2316
Stereo matching net Hazy 0.5421 0.5049 0.5288 22.372 16.553 20.294(Clear)

Dehazed 0.3799 0.4073 0.3897 10.606 8.3087 9.7859

Stereo matching net Hazy 0.3781 0.4455 0.4022 8.4375 10.031 9.0066(Hazy)

Full architecture Hazy 0.2643 0.4052 0.3147 3.7753 6.1859 4.6362(Hazy)

Dehazing

Network PSNR (dB)

FT3D [20] Driving [20] Avg.

Dehazing net w/o Lmodel 19.692 19.134 19.492
Dehazing net 20.225 19.541 19.981

Full architecture w/o Lmodel 22.031 21.248 21.751
Full architecture 22.900 21.744 22.487

Table 2: The results of ablation study on the FT3D and Driving datasets [20]. (left) stereo
matching and (right) dehazing tasks, respectively.

combine these information, we associate the intermediate activations via concatenation at
the end of the encoders (Fig. 2(d)). The combined activations are then followed by the task-
specific decoders for the stereo matching and dehazing, respectively (Fig. 2(e) and (f)). Each
decoder in the stereo matching and T -network keeps their skip connections with the corre-
sponding encoders (the dotted lines in Fig. 2). Note that we directly fuse the depth cues from
the learned cost-volume and haze-relevant features to achieve better reconstruction of dis-
parity and transmission. This is a noticeable difference from the previous approaches [3, 17]
that are based on the iterative use of multi-label graph cuts [1] or loopy belief propagation
[7]. The A-network estimates the atmospheric light along Fig. 2(c), and interacts with the
T -network through the model consistency loss Lmodel .

Loss function Finally, we jointly train our full architecture in Fig. 2. The overall loss
function is the summation of three terms:

LTotal = LD +LT +LA. (8)

Consequently, all three estimates (D̂, T̂ , Â) reinforce each other to optimize the whole model.
It is trained by back-propagation in an end-to-end manner. We use the Adam solver [15] and
their default setting. The initial step size is set to 10−4 which is kept constant for the first
100,000 iterations, and after that it is halved every 20,000 iterations until the end (400,000
iterations in total).

4 Experimental Results
Experimental setup and detailed analysis of the proposed method are presented in this sec-
tion. We conduct extensive ablation studies to demonstrate the effectiveness of our joint
model. We also compare our method with other state-of-the-art approaches, including [2,
3, 13, 24]. The proposed method are implemented with the tensorflow library [22], and are
trained using NVIDIA GeForce GTX 1080. The results for the comparison, except for [3],
are obtained from source codes provided by the authors. Since the source code of [3] is not
available publicly, we directly take their results from the original paper. We ensure that all
the learning-based methods are trained with the same procedure.
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Figure 3: Visual results of ablation study for stereo matching. (From left to right) Hazy left
image, disparities from the stereo network fine-tuned on hazy stereo, sequential dehazing
and stereo networks, and our full architecture.

4.1 Implementation details
Dataset We use three publicly available datasets for training and testing in this work:

• FlyingThings3D (FT3D) [20]: it is a large scale dataset that consists of synthetic stereo
pairs and the corresponding disparities. We discard samples with unreasonably large
disparities, resulting in 20,000 stereo pairs for training and 3,000 for testing.

• Driving [20]: it provides synthetic but mostly naturalistic 4,000 street scenes from the
viewpoint of a driving car. Since there is no official split, similar to the practice in [9],
we divide the dataset into training and testing splits (3,750 and 250, respectively).

• FRIDA3 [3]: a small dataset capturing synthetic outdoor scenes, which has 66 stereo
pairs with ground-truth disparities. We use this for testing only.

Thus, the total numbers of training and testing samples are 23,750 and 3,316, respectively.

Haze generation For each left and right image, the depth map z is first recovered from
the ground-truth disparity with z(x) = b f/D(x), where b and f denote the baseline distance
and the camera focal length. We then choose random β ∈ (1.0,2.2) and A ∈ (0.7,1.0), and
generate the transmission map T . Finally, we synthesize the input stereo pairs using (1). We
do not perform any data augmentation as geometric shifts could break the epipolar constraint,
and lead to negative disparities [20].

4.2 Ablation study
In this section, we provide an intensive ablation study to see how each component contributes
to the performance of our model. The results for the stereo matching is reported in Table
2(left). The evaluation is performed on the 3,250 testing split of FT3D and Driving datasets
[20].

We additionally train the stereo matching network only in Section 3.2 with different
configurations: training with clear and hazy stereo pairs. It can be seen that the perfor-
mance of the stereo matching network trained with clear image is degraded in the presence
of haze, and the fine-tuning on hazy stereo pairs is marginally helpful. We also provide the
result of the straightforward combination of dehazing and stereo matching networks in Table
2(left). In this case, we separately train the dehazing network in Section 3.3 and perform
the stereo matching on dehazed images. Our full model achieves the best quantitative per-
formance in terms of three-pixel-error (3PE) and endpoint-error (EPE). Visual comparisons
of stereo matching are shown in Fig 3. Our method produces the plausible disparity even
at the far-away object (see the red-box in Fig 3). These experiments demonstrate that depth
information from haze transmission can serve as an additional cue for disparity estimation.
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Figure 4: Visual results of ablation study for dehazing. (From left to right) Hazy image,
results from the dehazing network and our full architecture, and ground-truth image.

Figure 5: Simultaneous stereo matching and dehazing on the FRIDA3 dataset [3]. (From left
to right) Hazy left, disparities from [3] and ours, and dehazed left images from [3] and ours.

The quantitative results for dehazing task is reported in Table 2(right). We compare the
results from the dehazing network and our full model. The effect of Lmodel is also analyzed.
Combining the depth cues from stereo and single haze transmission has the most impact on
dehazing performance, and the forward model consistency loss Lmodel results in the further
improvement. The gain from our full model exceeds about 3dB in average. We show the
visual comparisons of dehazing in Fig. 4. It can be observed that the single dehazing network
suffers from the airlight-albedo ambiguity [5]. That is, the transmission is overestimated for
bright pixels (or underestimated for dark ones). In contrast, our full architecture estimates
the transmission map, aligning to the actual depth ordering.

4.3 Comparison with state of the arts and further experiment

Here, we compare our method with the current state-of-the-art methods in terms of stereo
matching or dehazing. To our best knowledge, simultaneous stereo matching and dehazing
using CNNs has not been investigated earlier in the literature. For the stereo matching, the
only work that is directly comparable to ours is the method of Caraffa et al. [3]. They
formulate a joint MRF model of the both tasks, which is optimized iteratively using α-
expansion [3]. We provide an evaluation comparing our method both quantitatively and
qualitatively with [3] on the FRIDA3 dataset. For the dehazing evaluation, we compare to
several single image dehazing methods, i.e., the dark channel prior (DCP) [13], MSCNN
[24], and DehazeNet [2]. The last two methods are based on the CNNs. Finally, we show
the result of our fine-tuned model on KITTI dataset [8].

Comparison with [3] Visual examples on the FRIDA3 dataset [3] are presented on Fig. 5.
As can be observed, our results are much visually pleasant for both near and far regions. The
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Stereo Matching (1PE)

Caraffa [3] Full architecture

0.172 0.124

Dehazing (PSNR in dB)

DCP [13] MSCNN [24] DehazeNet [2] Our dehazing net Full architecture

13.388 15.512 15.723 16.124 17.383

Table 3: Quantitative comparison on the FRIDA3 dataset [3]. (left) stereo matching and
(right) dehazing tasks, respectively. Note that “Our dehazing net” takes a single image only.

Figure 6: Simultaneous stereo matching and dehazing on the KITTI dataset [8]. (From left
to right) Hazy left, estimated disparity, and dehazed image.

method [3] suffers from artifacts in lower left corner and far objects for disparity estimation.
These artifacts generate large error on the dehazed images (see the road, building, and tree
in Fig. 5). Quantitatively, we measure and report the one-pixel-error (1PE) in Table 3(left).

Comparison with the recent single image dehazing We perform the quantitative evalua-
tion with recent single image dehazing methods on the FRIDA3 dataset [3]. All the learning-
based methods [2, 24] including ours are trained on FT3D and Driving datasets [20]. The
results are reported in Table 3(right). In this table, “Our dehazing net" denotes the dehazing
network in Section 3.3 trained separately, and thus it takes a single hazy image as input. Our
dehazing network outperforms the existing single image methods [2, 13, 24], and the depth
cue from stereo matching significantly improves the performance of dehazing.

Further experiment Due to the absence of a real dataset with dense ground-truth disparity,
our evaluation was limited to a synthetic dataset. To establish possible extension of our
method to real-world scenarios, we alternatively use hazy images and disparities from Foggy
Cityscapes [26]. We fine-tune our network on 2975 training and 500 validation images on
Foggy Cityscapes. In the testing stage, we follow the approach introduced in [26] to simulate
the haze on the KITTI dataset [8]. Figure 6 shows the results of simultaneous stereo matching
and dehazing on KITTI dataset [8]. This figure demonstrates that our fine-tuned model can
be successfully applied to real scenes.

5 Conclusion
In this paper, we have introduced a joint learning framework for simultaneous stereo match-
ing and dehazing. Different from the previous methods, our deep architecture directly com-
bines depth cues from stereo image and single haze transmission. We further enforce the
estimated transmission and atmospheric light to be consistent with the scattering model. As
a result, our method estimates high-quality disparities in scattering media, and produces ap-
pearance images with enhanced visibility. Experiments demonstrate the effectiveness of our
method on both stereo matching and dehazing.
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