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Abstract

With the rapid development of depth sensors, RGB-D data has become much more
accessible. Scene flow is one of the fundamental ways to understand the dynamic content
in RGB-D image sequences. Traditional approaches estimate scene flow using registra-
tion and smoothness or local rigidity priors, which is slow and prone to errors when the
priors are not fully satisfied. To address such challenges, learning based methods provide
an attractive alternative. However, trivially applying CNN-based optical flow estimation
methods does not produce satisfactory results. How to use deep learning to improve
the estimation of scene flow from RGB-D images remains unexplored. In this work,
we propose a novel learning based framework to estimate scene flow, which takes both
brightness and scene flow losses. Given a pair of RGB-D images, the brightness loss is
used to measure the disparity between the first RGB-D image and the deformed second
RGB-D image using the scene flow, and the scene flow loss is used to learn from the
ground truth of scene flow. We build a convolutional neural network to simultaneously
optimize both losses. Extensive experiments on both synthetic and real-world datasets
show that our method is significantly faster than existing methods and outperforms state-
of-the-art real-time methods in accuracy.

1 Introduction
Fully Connected Layer is a operator where the output feature Y is densely connected to the
input feature X by a weight matrix W and a bias b, usually follwed by a non-linear activation
function O(·), such that Y = O(WX+b).
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With the rapid development of depth sensors such as the Microsoft Kinect, RGB-D im-
ages become much easier to acquire. Dynamic RGB-D data becomes much more popular
recently in computer vision research, due to its important role in perceiving and continuously
learning the environment. It has been utilized in diverse applications including scene recon-
struction, object tracking, action recognition, etc. Scene flow, first introduced by Vedula
et al. [21], plays a key role in understanding dynamic RGB-D image sequences, which
describes the 3D motion flow of each RGB-D frame. Researchers have proposed several
methods to estimate scene flow, such as the superpixel-rigid-based model [23] and the model
using moving planar patches [15]. Since an RGB-D frame contains both a color image and
a depth image, those works are mainly derived from optical flow estimation methods. Re-
cently, convolutional neural networks (CNNs) are employed to estimate the optical flow for
videos and show the capability of obtaining high-precision results. However, how to improve
scene flow estimation from RGB-D images using deep learning remains unexplored. On the
other hand, traditional methods are often time consuming, making them unsuitable for cer-
tain application scenarios, e.g., a robot in a new environment needs to analyze the scenes in
real-time. Thus, we need both efficiency and effectiveness in the scene-flow estimation task.

In this work, we propose a novel CNN-based framework called SF-Net to estimate the
scene flow from RGB-D images. The input to our network is a pair of consecutive RGB-D
images and the output is the 3D motion flow between them. To take full consideration of
the 3D scene flow from both color and depth images, our network has dedicated branches
in shallow layers of the network that correspond to image and depth input respectively, due
to their different characteristics. To train the network, we optimize a loss function involving
both brightness and scene flow errors. The brightness error is used to measure the disparity
between the second RGB-D image deformed by the scene flow and the first RGB-D image,
and the scene flow error is for learning from training examples. Both losses provide com-
plementary information, and by combining them our approach achieves both efficiency and
accuracy.

The main contributions of this paper are: 1) We propose the first end-to-end CNN-based
scene flow estimation method for RGB-D images, which achieves real-time prediction while
producing high quality results. Our method outperforms classic methods on synthetic data-
sets by a large margin for both efficiency and accuracy. On real-world datasets, our method
also achieves higher accuracy than existing real-time methods. 2) To achieve this, we utilize
dedicated convolutional layers for RGB and depth channels and develop a loss function in-
volving both brightness and scene flow errors in our deep architecture, which improves the
performance.

The paper is organized as follows: After reviewing related work in Sec. 2, we introduce
the structure of our network in Sec. 3 and our loss function in Sec. 4. In Sec. 5 we compare
SF-Net with several state-of-the-art RGB-D scene flow methods on both synthetic and real-
world datasets, and finally conclusions are drawn in Sec. 6.

2 Related Work
In this section, we first review the related work about scene flow estimation. Then the CNN-
based motion estimation methods are reviewed.

Scene Flow Estimation using Traditional Methods. Some pioneer research works
estimate the 3D motion flow from images captured using multi-camera systems or RGB-D
cameras. In the earlier research works, scene flow is estimated from data collected using
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Figure 1: Our SF-Net architecture. For both input RGB-D images III1 and III2, share-weight
convolution layers are applied with separate layers for color and depth channels, which are
then stacked together. A correlation layer combines branches from III1 and III2, followed by a
conv/deconv architecture. Multi-resolution scene flows are predicted along the deconv path,
each of which computes loss with downsampled ground truth. In the end, the full resolution
scene flow is used to warp 3D point cloud generated from input depth of III2, which is then
compared with the original RGB-D image III1 to work out the brightness loss.

a multi-view camera system [21]. Vogel et al. [23] propose a superpixel-rigid-based scene
flow model which uses view and temporal consistency simultaneously. Menze et al. [15]
use a set of rigidly moving planar patches to model scenes as a collection of decomposed
rigid moving objects. With the development of depth cameras, RGB-D images become much
more popular. To estimate the scene flow from such kind of depth images, various methods
have been developed. To address the ill-posed problem, the main idea of these works is to add
proper priors on the motion. Quiroga et al. [17] use local and global rigidity to regularize the
3D motion with piecewise smooth regularization. Hornacek et al. [8] assign 6 DoFs (degrees
of freedom) to each 3D RGB-D patch, which is further constrained with local rigidity to get
the dense scene flow. Sun et al. [20] propose a layered RGB-D method to improve scene flow
estimation in the occlusion regions. Jaimez et al. [10] propose a real-time RGB-D approach
which solves for scene flow on GPU. These unsupervised methods based on optimization
can produce high quality results if the scene and motion follow the priors, but most of the
methods are slow (far from real time) and they may not perform well when the priors are not
fully satisfied.

Motion Estimation using CNNs. With the popularity of CNNs, deep learning methods
are adopted in various fields of computer vision with state-of-the-art performance. We review
papers relevant to our work.

Dosovitskiy et al. [4] first introduce an end-to-end CNN for optical flow estimation.
Their FlowNet is inspired by Long et al. [13], whose Fully Convolutional Network predicts
pixel-wise values, and the works [5, 6] that refine results by coarse results and input images.
FlowNet extracts features from both frames with a correlation operation and increases the
resolution through an upconvolutional architecture. Ilg et al.’s FlowNet2 [9] obtains more
accurate optical flow by stacking [16] FlowNet and applying warping operations [3], reach-
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ing the same level of performance as state-of-the-art methods.
Alternative learning-based approaches combine CNNs with other methods for optical

flow estimation. Bailer et al. [2] utilize a CNN to extract and match features, which substitute
handcrafted features in [1]. Wulff et al. [25] improve optical flow estimation by learning a
semantic segmentation over static and moving regions, where the former is solved using
strong constraints and the latter is unconstrained. Yu et al. [11] design an unsupervised
model via brightness constancy. Vijayanarasimhan et al. [22] predict depth, segmentation,
camera and rigid object motions with an unsupervised loss. They recover the motion field
and get optical flow by projection. A similar idea is used in our loss function, although our
approach does not assume rigid motion masks, and can extract features from RGB-D input,
which is popular nowadays.

Fewer methods are designed to estimate scene flow. Mayer et al. [14] propose the first
CNN-based scene flow estimation method for stereo images and obtain promising results.
Their SceneFlowNet combines a FlowNet which predicts optical flow and two DispNet esti-
mating disparities. To train the large CNN end-to-end, they also introduce a large synthetic
dataset containing ground truth. However, their problem setting is different from ours since
our inputs are RGB-D images. A key point for RGB-D methods is to properly process depth
data, e.g. Saurabh et al. [7] individually extract color and depth features for object detection.

3 Network Architecture
Classic methods often treat scene flow estimation as an optimization problem based on
brightness error and some motion model. However, such priors may not be fully satisfied in
input data, leading to a performance drop. We therefore propose a learning based approach
such that we do not enforce specific prior models but instead learn from training examples.
Here, we design an end-to-end CNN model, SF-Net, to estimate the scene flow between two
neighboring images in an RGB-D video.

Figure 1 shows the structure of our network. Given a pair of RGB-D images III1, III2 ∈
Rh×w×4 as input, where w and h are the width and height of images, we predict scene flow
VVV ∈ Rh×w×3. The loss function consists of two terms: brightness and scene flow errors. The
scene flow error measures the difference between predicted scene flow and the ground truth,
while the brightness error measures the difference between the warped image III2 using the
scene flow and the original image III1. We will give more details on how to compute them in
Section 4. In our method, depth and color images are assumed to be aligned, otherwise some
alignment algorithms like [27] can be used to preprocess the input.

A straightforward idea of utilizing depth information is to treat depth as an additional
channel and stack it with RGB channels in the input layer. However, since depth and color
are two heterogeneous data sources, simply treating them in a similar fashion then adding
together at the very beginning could not produce good results (see experiments in Table 2).
We therefore take another approach which better exploits the depth information by perform-
ing convolutions on color and depth data separately to extract intrinsic features and fusing
them at later stages.

For clarity, fed with an image pair III1 and III2, the network first convolves depth and
color channels separately, and then concatenates the features extracted from RGB and depth
channels. The operations above are identical for both III1 and III2 by using convolutional
layers with shared weights, considering that the analysis on images should be temporally
invariant. A correlation layer [4] is then applied to compare feature patches from III1 and
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III2 and combine them. Later we downsample feature maps using convolution layers. After
reaching the lowest resolution, the network begins to upsample the features using transpose
convolutional layers. Every scale also takes the predicted flow and previous convolutional
layer as input. At last, the network generates a scene flow map with the same size as the
input images.

To fully utilize the depth information, we map pixels in the image domain Ω ⊂ R2×R
into the 3D point cloud domain R3 with the help of the depth map. The predicted scene flow
then transforms generated point clouds. We can get the warped image by projecting point
clouds back to the image domain. The per-pixel Euclidean distance between the first image
and the second image warped with the flow forms the brightness error in our network.

4 Loss Function

Given ground truth flow, our network can be trained in an end-to-end manner with a loss
function composed of two parts, scene flow error and brightness error. The total loss is de-
fined as L = Lscene f low+αLbrightness, where Lscene f low denotes the scene flow error calculated
by comparing prediction with the ground truth, and Lbrightness is the brightness error produced
by warping. α controls the importance of the brightness error term, and is chosen through
experiments presented in Table 1. Once trained, our network is able to predict the scene flow
given a pair of RGB-D images by a forward pass, which is very efficient (see Table 3).

4.1 Scene Flow Error

In the network, taking the feature map in the lowest resolution, we apply a series of transpose
convolutions on it and predict a scene flow map at each layer. In a forward process, we obtain
multi-resolution scene flow outputs, which can be compared with down-sampled ground
truth flow. In practice, we compute the endpoint error (EPE) between predictions and the
ground truth as existing optical flow algorithms do [3, 9]. For prediction with r scales, the
scene flow loss is defined as Lscene f low = ∑

r
i=1 ωi‖V̂VV i−VVV i‖2, where ωi represents the weight

for the ith scale, V̂VV i is the predicted result, and VVV i is the ground truth. We have to notice that
a pixel in a lower resolution represents more pixels in the original image, so the accuracy
of low resolution is more important. Therefore, we assign a greater weight ωi for the scene
flow error in a lower resolution as parameters in Sec. 5.1.

4.2 Brightness Error

In the real world, ground truth scene flow is nearly impossible to acquire, while end-to-end
learning architectures need such data. This causes a major limitation for previous algorithms.
Recently, in optical flow estimation, a warping operation along with a brightness error, which
is similar to the data term in classical algorithms [11, 22], has been shown to be effective
as a loss term. Inspired by this, we introduce the brightness loss by warping images. For a
more efficient gradient back-propagation, we warp III2 instead of III1 as FlowNet 2.0 [9].

At the end of our network, a scene flow map VVV with the same resolution as input is
predicted. We use this flow to warp III2 to obtain III, where III is the RGB-D image such that
when VVV is applied leads to III2, i.e. the pixel pppx,y in III is transformed to the pixel p̂ppx,y in III2
by predicted scene flow VVV . We further assume that we have known projection parameters
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( fx, fy,cx,cy) (the focal lengths and center point), which are usually available when using
RGB-D sensors.

First, we map each pixel pppx,y in the warped RGB-D image III to its corresponding point
XXXx,y in 3D space. Second, we translate it to X̂XXx,y according to the scene flow vector. Third,
by projecting the point X̂XXx,y back to the image plane, we obtain the new position of the pixel
pppx,y in III2. New coordinates are written as p̂ppx,y = (x̂, ŷ, ẑ) = fff (pppx,y,VVV x,y) , such that

x̂ =
(x− cx)z

z+ vz
+

fxvx

z+ vz
+ cx, ŷ =

(y− cy)z
z+ vz

+
fyvy

z+ vz
+ cy, ẑ = z+ vz (1)

where fff represents the whole process of mapping, translating and projection. Here x,y
are the original coordinates in the image plane and z is the depth value. p̂ppx,y = (x̂, ŷ, ẑ) is
the new pixel in III2 corresponding to the pixel pppx,y = (x,y,z) in III by the scene flow vector
VVV = (vx,vy,vz).

As the pixel pppx,y in III is transformed by scene flow to p̂ppx,y in III2, we know III(x,y) = III2(x̂, ŷ)
where III(x,y) denotes the RGB-D value (color and depth) of pppx,y. However, the transformed
pixels (x̂, ŷ) are not likely to be at integer positions, so we bilinearly interpolate III2 to get
continuous ĨII2(x,y), which is formulated as

ĨII2(x,y) = θ̄xθ̄yIII2(bxc,byc)+θxθ̄yIII2(dxe,byc)+ θ̄xθyIII2(bxc,dye)+θxθyIII2(dxe,dye). (2)

where (θx, θ̄x,θy, θ̄y) denotes the coefficients of interpolation, i.e. θx = x−bxc, θ̄x = 1−θx,
θy = y−byc, θ̄y = 1−θy. In case the motion vector is large and the new pixel (x̂, ŷ) is out of
boundaries, we assign zero value to III(x,y). Therefore, we obtain the forward pass as

III(x,y) =
{

ĨII222(x̂, ŷ) if (x̂, ŷ) ∈ΩΩΩ

0 otherwise
(3)

where Ω is the defined image domain. With the warped III = warp(III2,VVV ), the brightness loss
is defined as Lbrightness = ‖III− III1‖2. Note that, both III and III1 have RGB-D channels. In the
network, each channel is normalized so that the weights of the four channels are equal in this
case. This loss assembles the data consistency in traditional methods.

Since bilinear interpolation is differentiable, we can pass the gradients from III to Ĩ2 and
calculate gradients on VVV x,y = (vx,vy,vz), based on the forward-pass equation (Eq. 1). Take
vx for example,

∂ ĨII2(x̂, ŷ)
∂vx(x,y)

=−
fy

z+ vz
θ̄yIII2(bxc,byc)+

fy

z+ vz
θ̄yIII2(dxe,byc)

−
fy

z+ vz
θyIII2(bxc,dye)+

fy

z+ vz
θyIII2(dxe,dye).

(4)

5 Experiments
In this section, we first describe the implementation details and parameters of SF-Net. Fur-
ther tests on variants of SF-Net show the effects of network components and loss function
terms. In the end, we compare our SF-Net qualitatively and quantitatively with other meth-
ods on several datasets.

In the following experiments, the scene flow error is measured in the image domain using
standard root mean square error (RMS) between the predicted and ground truth flow, which
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is commonly used in motion flow estimation [11, 24]. To analyze the effect of the weight
α for the brightness loss, we experiment several alternatives and list the results in Table 1.
α = 0.002 gives the best performance for both training and testing and thus is used by default
in our pipeline.

Brightness Loss α = 0 α = 0.001 α = 0.002 α = 0.005
Test 7.84 6.09 5.03 5.28

Training 5.26 4.81 4.22 4.65

Table 1: Different weights for the brightness loss. We conduct a series of experiments on
Monkaa and Driving [14] to find a proper weight for the brightness loss. In our experiments,
the weight α = 0.002 achieves the best performance for both training and testing. In addition,
compared with α = 0, we can conclude that the introduction of the brightness loss improves
the performance of the network.

5.1 Implementation Details
Figure 1 depicts the basic structure and parameters of SF-Net. Similar to FlowNet [4],
we use a conv/deconv architecture with stride 1 and stride 2. The loss weights are ω =
[0.32,0.08,0.02,0.01,0.005] and α = 0.002.

Our implementation is based on the TensorFlow framework. We performed experiments
on a PC with an Intel Core i7-2600 CPU and an NVIDIA TitanX GPU. We make use of the
Adam optimizer [12] with Adam parameters β1 = 0.9, β2 = 0.999 as in [12]. We follow
the training schedule of [18]. The network was first trained on Flytingthings3D for 200,000
iterations, and then fine-tuned on Monkaa and Driving [14] for 100,000 iterations.

5.2 Performance of Different Networks
In order to illustrate effects of different components and loss terms in our network, we train
and test them on the Monkaa [14] dataset. Monkaa is a large scene flow dataset, in which
frames are rendered from various synthetic image sequences. It has accurate depth maps
and ground truth scene flow so as to give a reasonable comparison between algorithms under
ideal conditions. In total, we compare our SF-Net with three variants. Recall that our SF-Net
has branches for RGB and depth input, followed by a body part of FlowNetC, and a warping
layer at the end. To test the performance of FlowNetS and FlowNetC [4] architectures in
RGB-D scene flow estimation, we simply expand the number of output channels from 2 to
3 and add depth as another input channel, without using branches in the beginning. Accord-
ingly, these two modified networks are named as FlowNetS+RGB-D and FlowNetC+RGB-
D. The third network SF-noWarping is the lite-version of SF-Net without brightness loss,
and SF-brightness is trained with only brightness loss. Figure 2 shows qualitative results.

From Table 2, simply adapting FlowNet to scene flow prediction will cause a higher er-
ror, showing that separated convolution for depth information indeed helps with 3D scene
flow estimation. Furthermore, FlowNetC outperforms FlowNetS, which indicates that the
correlation layer contributes to this task as well. We also observe that surpervision is im-
portant in this task, since training with only brightness error has poor performance. The last
column shows that our approach with separated convolutions and brightness loss improves
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Method FlowNetS+RGBD FlowNetC+RGBD SF-noWarping SF-brightness SF-Net

RMS
Test 17.24 13.81 10.82 92.64 5.03

Training 13.65 9.27 8.83 70.81 4.22
Time 16ms 18ms 20ms 23ms 23ms

Table 2: Architecture test. We show the root mean square error (RMS) during training and
testing on the Monkaa dataset [14]. All the networks can run in real-time. Our SF-Net gets
the least error, while the network trained with only brightness error has worse performance.
We conclude that depth information is important for this task.

(a) Image (b) Groundtruth (c) FlowNetS+RGBD (d) FlowNetC+RGBD (e) SF-noWarping (f) SF-brightness (g) SF-Net

Figure 2: Scene flow prediction on a synthetic dataset (Monkaa [14]). We show differ-
ent variants of our network and direct generalization of FlowNet [4], (a) input, (b) ground
truth scene flow, (c) result of FlowNetS+RGB-D, (d) result of FlowNetC+RGB-D, (e) SF-
noWarping (SF-Net without the warping layer), (f) SF-brightness (trained with only bright-
ness error), (g) our proposed SF-Net. We can see that SF-Net with 3D warping and separated
convolutions achieves the best result.

the performance and achieves the best result among all these architectures. Moreover, the
Time row indicates that all the architectures tested can run in realtime due to the end-to-end
CNN structure, which shows potential for many applications.

5.3 Comparison with Previous Methods

When compared with previous methods for scene flow estimation [10, 17, 20], SF-Net not
only achieves better accuracy, but also predicts scene flow in much shorter time. For exam-
ple, the running time of [20] can reach up to 4 minutes per frame, making it difficult to apply
in realtime applications. By contrast, our method only needs 0.02s for a pair of frames. In
this section, we choose Quiroga et al. [17], Sun et al. [20] and another real-time algorithm
PD-Flow [10] to compare with our method. For all four approaches, we test on synthetic
datasets, real-world data and Kinect data. The qualitative results are shown in Figure 3,
where scene flow is projected onto the image plane and visualized as its optical flow maps.

Monkaa & Driving. Similar to Sec. 5.2, we test on synthetic datasets Monkaa and
Driving since they involve non-rigid motion and have ground truth scene flow. We randomly
divide the RGB-D frames contained in Monkaa and Driving into training and testing groups
by a ratio of 9:1. Columns 5 and 6 in Figure 3 show the results of an example. RMS errors of
different methods are reported in Table 3 (rows 1-2) which shows our method is much more
accurate and faster than existing methods.

Middlebury Dataset. We run our SF-Net on Middlebury 2003 [19]. It is commonly
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Method PD-Flow [10] SRSF [17] Sun et al. [20] SF-Net

RMS

Monkaa 43.62 21.81 19.54 4.91
Driving 35.80 16.65 15.38 9.30
Cones 8.26 0.49 0.09 0.86
Teddy 7.32 0.45 0.17 1.14

Time 0.12s 120s 240s 0.02s

Table 3: Comparison with previous work. By measuring root mean square error (RMS) in
multiple datasets, we compare our SF-Net with existing RGB-D scene flow methods [10,
17, 20]. Our SF-Net achieves the highest accuracy with the shortest runtime in scenes with
non-rigid motion, while optimiazation-based methods perform better in rigid scenes such as
Cones and Teddy [19].

used to evaluate RGB-D scene flow methods. The RMS errors are in Table 3 (rows 3-4:
Cones & Teddy). Motion in Middlebury Dataset is almost rigid, so some classic algorithms
with strong priors achieve impressive results. Our method does not have any explicit motion
prior, but still works reasonably well. Furthermore, our method is also much faster than
alternative methods.

Microsoft Kinect Data. We now investigate to what extent our learned SF-Net model
generalizes to real-world data with noise. We use RGB-D frames captured by Yuan et al. [26]
as examples in Figure 3, where the motion is mostly non-rigid. Although no ground truth is
available, our method produces smooth and visually plausible results.

6 Conclusion

In this paper, we have proposed the first CNN-based learning framework, SF-Net, for RGB-
D scene flow estimation. In SF-Net, we use dedicated convolutional layers for RGB and
depth channels, and then fuse the extracted intrinsic features at later stages. We also develop
the loss function involving both brightness and scene flow error terms, which can utilize the
ground truth scene flow and the inherent relationship between the 3D point cloud and RGB-
D images respectively to guide the model training. The above characteristics are shown to
make our model more effective in the scene flow estimation task. In the experiments on both
of the synthetic and real world datasets, our method outperforms state-of-the-art RGB-D
scene flow estimation methods. Moreover, our computation cost is much less than previous
methods, making it suitable for real-time applications using RGB-D data.
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Figure 3: Comparison with previous work on synthetic and real-world data. We test (c)
PD-Flow [10], (d) SRSF [17], (e) Sun et al. [20] and (f) our SF-Net on Kinect data [26], real-
world data [17] and synthetic data. This figure depicts the predicted scene flow projected into
the image domain. Compared to alternative methods, our prediction tends to be smoother
and more robust.
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