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Abstract

The following document contains supplementary material for the paper Active Learn-
ing of Regression Task with Expected Model Output Changes. We provide additional
information for five aspects: (i) we point towards important relationships between our
EMOC criterion and other machine learning techniques (see Section S1), (ii) visualiza-
tions for the landmark prediction experiment presented in Section 4.2 of the main paper
(see Section S2), (iii) illustrations of input images for our experiments shown in Section
4.4 of the main paper (see Section S3), (iv) additional experimental evaluations on more
regression specific datasets (see Section S4), (v) and supporting video material for our
results shown in Section S4.1 and Section 4.2 of the main paper (see Section S5).

S1 Relationships to EMOC

Our proposed EMOC criterion can be related to other machine learning techniques. In the
following, we will show the connection to variance sampling and will comment on the re-
lationship to marginalization in Gaussian processes. Furthermore, we will point towards

differences in active learning for regression tasks and Bayesian optimization.

S1.1 Connection between EMOC and Variance Sampling

The main paper presents the theoretical derivation of the proposed EMOC criterion in Sec-
tion 3. However, sampling of uncertain instances is one of the most popular selection
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schemes in active learning (e.g., [9]). Since we utilize GP models in this paper, the model
uncertainty can directly be obtained as the predictive variance G% (x'). In the following, we
derive the relation between the proposed EMOC criterion and uncertainty sampling in case
of regression problems.

A possible approximation of the EMOC criterion is to estimate the output change of
each candidate data point only on the sample itself. The approach originally proposed by
[2] follows exactly this strategy. In this case, the expectation E, would be ignored. Consid-
ering only x’ in the calculation of the expected model output change leads to the following
(compare Eq. 6 of the main paper):

Af ) = (V]| Elllzllp) -

As noted before, the absolute Gaussian moment E [||z||»] only depends on o (x’) since fi(x’)
always equals 0. Therefore, ranking unlabeled samples corresponding to this moment is
similar to the ranking based on o(x’) directly. Furthermore, evaluating the v'-term only for
the current sample x’ leads to the following simplification:
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Since G,%, GJ% (x') and P are always positive values, ranking unlabeled samples relative to
|[V'||p is equivalent to ranking samples according to o (x’).

Considering both facts leads to the following conclusion: for GP regression models,
ranking using the predictive variance and using the proposed EMOC criterion is equivalent
under the condition that the EMOC scores are calculated only on the candidate instances
themselves. Since our general EMOC criterion is not relying on this approximation, it is
able to overcome drawbacks of variance sampling by taking the empirical data distribution
induced by all available samples into account.

S1.2 Comment on Marginalization in Gaussian Processes

While Gaussian processes are all about marginalization, it has to be pointed out that our
EMOC type of marginalization is different from the one utilized in GPs. Whereas GP
marginalizes over the likelihood of observations w.r.t. the prior function (e.g., Eq. (2.28)
of [14]), EMOC marginalizes the model output change (MOC) w.r.t. the continuous output
y (Eq. (1) in the main paper). Nonetheless, our proposed EMOC criterion relies on some
common fundamentals in integral calculation.

S1.3 Differences between Active Learning for Regression Tasks and
Bayesian Optimization

Bayesian optimization [3] aims at the hyperparameter optimization of costly (unknown) ob-
jective functions with the use of surrogate functions. This optimization technique is closely
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Query 5 Query 30 Query 55

Figure S1: Qualitative results for both views of the X-ray data [1] after different number
of queries for EMOC (red) and random selection (blue). (1): Both regressors fail to localize
landmarks after 5 queries. (2): EMOC enables the regressor to track several landmarks after
only 30 queries. (3): The regressor learned with EMOC is able to predict all landmarks
properly. Even difficult landmarks are estimated correctly after 55 queries. Images are
cropped for better visualization.

related to active learning since it tries to improve the surrogate function (i.e., an as precise as
possible estimation of accuracy for different hyperparameter sets) by querying performance
samples of hyperparameter constellations from the objective function. It is known that a
set of criteria are applicable in both areas. However, an important prerequisite for Bayesian
optimization is the availability of a non-changing objective function which can be evaluated
and for which the maximum has to be found. Hence, even after multiple evaluations (e.g.,
accuracy requests for hyperparameter sets), the objective function is still unchanged. In con-
trast, the objective function in active learning changes after every annotation request: since
new annotations lead to an updated model, the mapping from samples to error reduction
for this updated model is different from the mapping before the request. Additionally, in
Bayesian optimization, the fact that the label given by the annotator is unknown is not taken
into account since the objective function is independent of human interaction. Finally, while
the aim of Bayesian optimization is to quickly find the maximum of the objective function,
the goal of active learning is to discover the whole objective function as fast as possible.

S2 Visualizations of Landmark Prediction Experiment

Some qualitative results for the experiment described in Section 4.2 in the main paper are
shown in Fig. S1. It can be seen that our approach correctly predicts almost all landmark
positions with only 55 samples. In contrast to this, a regressor learned with randomly drawn
data achieves poor results (compare Fig. S5). This shows how important the selection of in-
fluential samples is and how the annotation effort can be reduced. Additional video material
is provided (see Section S5).
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resized input images

salt and pepper noise

ratlo =2.66% ratio = 2 88% ratio = 22 78% ratio = 10.31% ratio = 20 12%
Figure S2: Some example images of the MSCOCO dataset [12] with various perturbance

strengths.

S3 Visualizations of Image Quality Assessment
Experiment

Section 4.4 of the main paper presents experiments for image quality assessment using the
2014 MSCOCO v1.0 dataset [12]. We show in Fig. S2 some example images with randomly
applied perturbances. First, the image is resized (top row). Afterwards, the resized image
is blurred using a Gaussian kernel (middle row) and perturbed with salt-and-pepper noise
(bottom row). The resulting image is then fed to the CNN to generate features for our
regression task.

S4 Additional Experiments

Besides the experimental evaluation presented in Section 4 of the main paper which focuses
on computer vision applications, here we provide more general regression tasks. Addition-
ally, due to the lack of space, we only showed the learning curve of a single evaluation
scenario in Section 4 of the main paper. To compensate for this short-coming, we show a
complete overview of all results in Table S1 while the remaining learning curves are gath-
ered in Fig. S5. Explanations of the observable differences in accuracy can be found in the
corresponding sections in the main paper as well as in Sections S4.1 and S4.2. A summary
concerning all results is given in Section 4.5 of the main paper.

S4.1 Active Sensor Placement

Optimal sensor placement is a challenging problem in sensor networks [7]. The goal is to
propose positions for sensors such that the recorded data contains most information about
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random variance EGAL entropy Di0.0/Del.0  Di0.5/De0.5 Dil.0/De0.0  mahalanobis EMC EMOC
AwWA 63.78% (2) 69.69% (4) 86.15% (8)  71.51% (7) 87.27% (9) 70.93% (5) 71.23% (6) 67.77% (3) 100.00% (10) 62.04% (1)
ABL 59.51% (5) 49.28% (2) 77.17% (8)  77.85% (9) 100.00% (10) 68.85% (6) 69.54% (7) 55.24% (4) 50.92% (3) 49.24% (1)
C-Tai 87.00% (2) 91.89% (7) 95.67% (9) 100.00% (10)  94.10% (8) 90.47% (4) 90.58% (5) 91.19% (6) 88.64% (3) 85.03% (1)
yearbook 2549% (3) 33.71% (6) 37.33% (7)  45.16% (9) 100.00% (10) 37.64% (8) 27.87% (4) 23.65% (2)  28.94% (5) 22.81% (1)
MSCOCO quality  60.99% (2) 97.01% (8) 61.89% (3) 100.00% (9)  66.27% (6) 64.74% (5) 96.82% (7) - (1) 63.63% (4) 60.61% (1)
coastDat-1 6.89% (5)  5.02% (3) 54.19% (8) 100.00% (10)  80.95% (9) 36.73% (6)  4.99% (2) 44.27% (7) 627% (4)  4.96% (1)
'UCI concrete 71.47% (5) 68.34% (4) 88.81% (7) 89.83% (8) 100.00% (10) 95.03% (9) 67.88% (2) 72.84% (6) 67.97% (3) 66.92% (1)
'UCI housing 71.64% (6) 68.11% (3) 77.67% (1)  91.30% (9) 100.00% (10) 87.29% (8) 66.64% (2) 69.24% (4) 69.33% (5) 64.66% (1)
UCI redwine 91.23% (6) 90.52% (4) 93.28% (7)  99.27% (9) 100.00% (10) 98.84% (8) 90.20% (2) 90.21% (3) 90.52% (5) 90.17% (1)
UCI yacht 76.31% (5) 60.92% (3) 86.05% (7) 95.40% (9) 100.00% (10) 86.16% (8) 59.79% (2) 77.00% (6) 62.84% (4) 57.90% (1)

UCI whitewine 73.77% (6)  72.12% (4) 88.44% (1)  99.07% (9) 100.00% (10) 97.68% (8) 72.00% (3) 72.52% (5) 71.66% (2) 71.56% (1)

average rank 4.27 4.36 7.09 891 9.27 6.82 3.82 5.09 4.36 1.00

Table S1: Area under error curve in percent relative to the worst performing method on
the same dataset (lower is better). Additionally, a ranking (lower is better) of all methods
according to their area under error curve per dataset is given in brackets as well as an overall
ranking at the bottom.

the problem to be solved. Examples for variables to be estimated are the composition of
soil in agriculture [10] or the air contamination in cities [15]. Active learning can provide
solutions to this field of research by interpreting the query process of selecting unlabeled
data as identification of possible sensor positions. In the following, we use the coastDat-
1 hindcast dataset [8] as basis for such an optimal selection process of points in space to
measure certain environmental variables. The dataset consists of various marine climate
variables measured at locations across the southern North Sea at different points in time
between the years 1958 to 2007. Since no measurements are available at locations over land,
we select the subset of the data between 53.9° N, 0° E and 56° N, 7.7° E at 1981-11-24,
02:00 AM. This results in 3,354 position-measurement pairs.

Experimental Setup We only consider the wave height for our experiments and the posi-
tions thereof. The positions are normalized to the range [0, 1]. Hence, the regression problem
consists of two-dimensional real-valued inputs and one-dimensional real-valued outputs. We
use the geographical locations of four randomly chosen wave height measurements as initial-
ization for £. The active learning techniques should then propose points on the grid where
additional measurements shall be acquired, i.e., new sensors should be placed to improve
regression of wave heights. Evaluation is repeated ten times on random splits with 1,675
samples for the test set T and 1,675 unlabeled samples for ${. The GP model uses an RBF
kernel.

Evaluation  As the results in Table S1 and Fig. S5 show, our EMOC criterion performs
best along with a few other baseline methods (i.e., variance and diversity). The results clearly
indicate how important the selection of data points is for labeling. Density sampling, for
example, leads to a drastic deterioration after few queries while diversity sampling achieves
nearly best performance. This difference in behavior might be explained as follows: Density
sampling chooses positions in dense regions and broadcasts this knowledge over the entire
map. If there are drastic wave height differences in those dense regions, the model predicts
this all over the considered area. In contrast, diversity sampling selects positions maximally
distant from the already known sensor placements and therefore builds a uniform sensor
grid. This behavior leads to slightly worse results in comparison to our approach. The same
arguments hold for variance sampling. Our method is able to outperform both baselines with
small margin since it it able to explore the feature space more efficiently because it is not
only relying on feature distances.

Visualization Fig. S3 shows visualizations of a sample experimental run. Here, we com-
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Query 2 Query 4 Query 6 Query 8
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Figure S3: Qualitative results as heatmap for experiments on the coastDat-1 dataset [8].
Hotter colors encode higher waves. Crosses identify known positions.

pare the evolution of predictions for two GP regressors. One of them learns from points cho-
sen at random and the other one is updated with positions queried according to the EMOC
criterion. This visualization shows nicely that EMOC selects positions to define the expanse
of the extremely high wave region in the center of the grid. In contrast to this, random selec-
tion is completely independent of the data which leads to poor results after 8 queries. This
example shows that EMOC is able to increase the accuracy of regression even after little
annotation effort.

S4.2 UCI Data

The UCI machine learning repository [11] is a widely known collection of different real
world datasets from various problem domains and sizes. A usual task is to predict a descrip-
tive real-valued attribute, for example the quality of wine, using real-valued features such as
alcoholic strength or color intensity. Since the repository provides a great variety of different
real world data, we follow [4, 13] and use the datasets UCT concrete,UCI yacht,UCI
housing, UCI redwine and UCI whitewine.

Experimental Setup  All of the used datasets consist of 8 to 13 dimensional inputs and
a single real-valued output variable to predict. Each of those datasets contains between 308
and 4,898 samples. After selecting a certain number of initial samples for £, the remaining
instances are split randomly in half to serve as unlabeled set Ll and test set ¥. Results are
averaged over multiple random initializations using an RBF kernel while we query all avail-
able samples in {L. In detail, the settings are (reported as: feat. dim. / # inits / ||£|| / ||}|| and
[|Z|]): UCI concrete (8 / 10 / 30 / 500), UCI housing (13 / 10/ 5/ 250), UCI redwine (11 /
10/9/795), UCI yacht (6 /10 /7 / 150), UCI whitewine (11 /3 / 8 / 2445). Following [4],
feature dimensions for each experiment on the UCI datasets are normalized separately.

Evaluation Results for this experiment can be found in Table S1 as well as Fig. S5 and
show similar behavior for all methods. Entropy and density sampling as well as the EGAL
scheme do not seem to be a suitable choice for this data. The remaining active learning meth-
ods achieve good results on some and worse results on other UCI datasets. We attribute this
to the small feature dimension of the data. Hence, it can be assumed that some feature di-
mensions are more important than others. For example, the median value of owner-occupied
homes in the neighborhood may be more important for housing value than the weighted dis-
tances to five Boston employment centres. This could explain the AUC error rates of some
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methods: distance based methods try to cover even unimportant dimensions, whereas the
proposed EMOC criterion implicitly combines empirical density and model information and
can identify important dimensions by estimating the output change since this information is
encoded in the model itself.

S5 Qualitative Results Video

To support the presented results, we additionally provide two video clips with visualizations
of the data selection and training process. A single video showing both clips can be found at
youtu.be/2BxZkpdpZwg. See also Fig. S4 for a one-frame snapshot of both clips.

Clip 1 - Description In the first part of the video, results are shown for the anatomical
landmark estimation (see Section 4.2 in the main paper). We overlay randomly selected
frames from test videos with the predicted landmarks from two models. Jittering landmarks
are due to retraining from increasing training set sizes over time. Since the prediction ac-
curacy should increase with the available training data, the accuracy should be highest at
the end of each mini-clip. Predictions from the baseline of passive (random) data selection
are indicated in blue, whereas the model trained with active data selection with our EMOC
criterion is shown in red.

Clip 1 - Observation Note that the red predictions match the anatomical landmarks of the
actual bird earlier than the blue predictions and fluctuate less over time. Hence, our EMOC
selection scheme is able to query informative samples right in the beginning of learning.
Ultimately, this allows for training models which predict nearly correct landmark positions
on important joints after few queries.

Clip 2 — Description The second part of the video visualizes the change of wave height
estimation when new information becomes available (see Section S4.1). In the left column,
we show the ground truth measurement of the wave and overlay the requested data points
from our EMOC criterion (top) as well as random selection (bottom). Additionally, we show
in the middle column the model predictions learned from currently queried data. The right
column shows the absolute difference of the current model prediction and the ground truth
data. Hence, overlayed crosses are identical in both clips of a row.

Clip 2 — Observation We observe that EMOC puts a strong focus on regions close to the
currently estimated border of the wave. Hence, we conclude that the regression model is able
to quickly adapt itself towards the correct regression after only a few queries with EMOC
whereas random selection needs far more queries to achieve comparable low error rates (see
most right column).
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Figure S5: Experimental results as error curves on different datasets for all evaluated active
learning methods (lower is better).
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