Supplementary material for "RISE: Randomized Input Sampling for Explanation of Black-box Models"

Vitali Petsiuk vpetsiuk@bu.edu Abir Das dasabir@bu.edu Kate Saenko saenko@bu.edu Boston University Boston, USA

Algorithm to compute deletion score.

Algorithm 1	
1: pi	rocedure Deletion
2:	Input: black box f, image I, importance map S, number of pixels N removed per step
3:	Output: deletion score d
4:	$n \leftarrow 0$
5:	$h_n \leftarrow f(I)$
6:	while I has non-zero pixels do
7:	According to S, set next N pixels in I to 0
8:	$n \leftarrow n+1$
9:	$h_n \leftarrow f(I)$
10:	$d \leftarrow \texttt{AreaUnderCurve}(h_i \text{ vs. } i/n, \forall i = 0, \dots n)$
11:	return d

Algorithm to compute insertion score.

Algorithm 2

1: procedure INSERTION	
2:	Input: black box f, image I, importance map S, number of pixels N removed per step
3:	Output: insertion score <i>d</i>
4:	$n \leftarrow 0$
5:	$I' \leftarrow \texttt{Blur}(I)$
6:	$h_n \leftarrow f(I)$
7:	while $I \neq I'$ do
8:	According to S, set next N pixels in I' to corresponding pixels in I
9:	$n \leftarrow n+1$
10:	$h_n \leftarrow f(I')$
11:	$d \leftarrow \texttt{AreaUnderCurve}(h_i \text{ vs. } i/n, \forall i=0,\dots n)$
12:	return d

© 2018. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

PETSIUK, DAS, SAENKO: SUPPLEMENTARY FOR RISE

Figure 1: RISE generated importance maps (second column) for representative images (first column) with deletion (third column) and insertion curves (fourth column).

PETSIUK, DAS, SAENKO: SUPPLEMENTARY FOR RISE

Figure 2: RISE generated importance maps (second column) for representative images (first column) with deletion (third column) and insertion curves (fourth column).

PETSIUK, DAS, SAENKO: SUPPLEMENTARY FOR RISE

Figure 3: RISE generated importance maps (second column) for representative images (first column) with deletion (third column) and insertion curves (fourth column).

Figure 4: Failure cases. In some cases RISE does pick up more important features, but cannot get rid of the background noise (in part due to MC approximation with only a subset) like in rows 1 and 2.