Supplementary material for
"RISE: Randomized Input Sampling for
Explanation of Black-box Models"

Vitali Petsiuk
vpetsiuk@bu.edu
Boston University
Boston, USA

Abir Das
dasabir@bu.edu

Kate Saenko
saenko@bu.edu

Algorithm to compute deletion score.

Algorithm 1

1: **procedure** `DELETION`
2: **Input**: black box f, image I, importance map S, number of pixels N removed per step
3: **Output**: deletion score d
4: $n \leftarrow 0$
5: $h_n \leftarrow f(I)$
6: **while** I has non-zero pixels **do**
7:
8:
9: $n \leftarrow n + 1$
10: $h_n \leftarrow f(I)$
11: $d \leftarrow \text{AreaUnderCurve}(h_i \ vs. \ i/n, \ \forall i = 0, \ldots, n)$
12: **return** d

Algorithm to compute insertion score.

Algorithm 2

1: **procedure** `INSERTION`
2: **Input**: black box f, image I, importance map S, number of pixels N removed per step
3: **Output**: insertion score d
4: $n \leftarrow 0$
5: $I' \leftarrow \text{Blur}(I)$
6: $h_n \leftarrow f(I)$
7: **while** $I \neq I'$ **do**
8:
9:
10: $h_n \leftarrow f(I')$
11: $d \leftarrow \text{AreaUnderCurve}(h_i \ vs. \ i/n, \ \forall i = 0, \ldots, n)$
12: **return** d
Figure 1: RISE generated importance maps (second column) for representative images (first column) with deletion (third column) and insertion curves (fourth column).
Figure 2: RISE generated importance maps (second column) for representative images (first column) with deletion (third column) and insertion curves (fourth column).
Figure 3: RISE generated importance maps (second column) for representative images (first column) with deletion (third column) and insertion curves (fourth column).

Figure 4: Failure cases. In some cases RISE does pick up more important features, but cannot get rid of the background noise (in part due to MC approximation with only a subset) like in rows 1 and 2.