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Abstract  

Face symmetrization has extended applications in both academic and medical fields. 
Human face possesses an important characteristic, which is as known as symmetry. 
However, in practice, this symmetry is never perfect, which yields a large amount of 
studies around this topic. For example, facial paralysis evaluation based on facial 
asymmetry analysis, facial beauty evaluation based on facial symmetry analysis, facial 
recognition, and facial frontalisation among others. Currently, there are still very 
limited researches that are dedicated for this topic. Most of the existing studies only 
utilized their own implantations for symmetric face generating to achieve their 
researches in other fields. Thus, limitations can be noticed in their methods, such as 
manual intervention requirement. Furthermore, most existing method utilize facial 
landmark detection algorithms for symmetric face construction. Despite the promising 
accuracy of the landmark detection algorithms, the uncontrolled conditions in facial 
images can badly impact the performance of the symmetric face production. To this 
end, this paper presents a variational autoencoder based deep generative model for 
symmetric face generating. It is achieved by a 3-stage training process to avoid the 
demand for the large size of the symmetric face as training data. Experiments are 
conducted with comparisons with several methods that achieved by some of the most 
popular facial landmark detection algorithms. Competitive results are achieved.   

Key words, facial symmetry, multi-stage training, variational autoencoder. 

1 Introduction 
Human face has an important character, which is as known as symmetry. However, in 
practice, this facial symmetry is never perfect. Difference can always be spot between left 
and right half faces, which yields a number of studies around this topic. For example, facial 
paralysis evaluation based on facial asymmetry analysis, facial beauty evaluation based on 
facial symmetry analysis, and many others. To properly evaluate this symmetry of the face, 
a facial symmetrization process is commonly utilized in most of the existing researches, 
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which provides a perfectly symmetric face based on only one half of the face. Therefore, the 
performance of the symmetrization is critical to those facial symmetry based applications.  

Most existing methods for face symmetrization are based on the facial geometric 
calculations with extracted facial landmark locations. However, the accurate of those 
extracted landmarks can drop dramatically under certain circumstances. To avoid such error 
accumulation during the process, this paper presents a novel method for a perfectly 
symmetric face generating by whole facial image analysis. A deep generative neural network 
is proposed for this task based on a deep Variational Autoencoder (VAE) architecture. One 
of the advantage of the proposed method is that it can minimize the influence of the 
unwanted conditions in the facial image when symmetrize the face, such as the facial 
illuminations, the occlusions of the face, and many others. Those unwanted conditions can 
badly damage the performance of the facial landmark localization, hence affect the facial 
symmetrization process for traditional methods. 

The contributions of this paper are as follows: (a) A generative model based on the deep 
variational autoencoder network is constructed for facial image synthesis, which consists of 
a CNN (Convolutional Neural Network) as encoder and a DGDN (Deep Generative 
Deconvolutional Network) as decoder. (b) A multi-stage training process that can learn the 
model parameters in a coarse-to-fine manner, which avoids the demand for large amount of 
the symmetric faces as training data. (c) A competitive performance demonstrated in the 
experiment compared with other existing methods.      

2 Related work 
The generating of the symmetric face has a great number of applications in many fields 
related to the computer vision. For example, most computer vision based facial palsy studies 
are deeply coupled with facial symmetry analysis to visually diagnose the facial regional 
movement functions [1–6]. Apart from this, the facial symmetry is also an important factor 
to evaluate the facial beauty or facial attractiveness reported in many studies [7–10]. The 
analysis of the facial symmetry can also contribute to many computer vision based 
applications, such as facial frontalisation [11–15], facial feature detection [16], facial 
recognition [17] and many other facial manipulations [18–21].   

Despite such large academic demands, there are still very limited researches dedicated 
for symmetric face generating. Most of the studies only achieves their own implementations 
of symmetric face generating for their academic studies in other fields. For example, Hassner 
et al. [12] have explored the face frontalisation problem with the consideration of facial 
symmetry. Their facial symmetry model, called soft-symmetry, was achieved with the facial 
features extracted by Supervised Descent Model (SDM) [22], which is one of the most 
popular methods for facial landmark localization. Iacopo et al. [23] have presented their 
work to utilize the facial symmetry property for pose-aware face recognition. They 
employed the similar strategy as Hassner et al. did in their frontalisation study, which 
utilized SDM facial landmark detection algorithm. Xu et al. [17] have also discussed the 
facial recognition based on the facial symmetry property. Their method was based on the 
generated virtual facial images that were axis-symmetric. Those virtual facial images were 
synthesized by flipping the original face that were manually cantered in the images. Their 
method required manual interventions during the symmetric face preparation step. Harguess 
et al. [24] have proposed a study to explore the relationship between the facial symmetry 
and face recognition. They included the discussions to utilize an average-half-face [25] to 
obtain a symmetric face for the study. To achieve the average-half-face, the facial image was 
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firstly centred about the nose, then divided into two symmetric halves, and finally averaged 
altogether. However, in their paper, they didn’t mention about how to localize the nose 
automatically. In practice, this can be done by either manually annotations or facial landmark 
detection algorithms, such as AAM [26], SDM [22], CLM [27] or CLNF [28]. Passalis et al. 
[29] have presented their research using facial symmetry to handle pose variations for face 
recognition. They utilized a facial landmark model that extracted eight anatomical facial 
landmarks for facial symmetry model generating.  

To summarize up, almost all the existing researches that related to symmetric face 
generating utilize a certain facial landmark extraction algorithm to find the facial symmetric 
axis for symmetric face reconstruction. Despite that the performance of the facial landmark 
extraction algorithms is increasing over recent decades, the facial landmark based facial 
symmetric axis estimation can still be less accurate since there are so many uncontrolled 
conditions in the facial images, such as head poses and occlusions. There is virtually no 
method that extract symmetric face based on full image analysis. Those challenges can 
provide an opportunity and a motivation in the computer vision community for the 
researchers to conduct more comprehensive studies on this topic.      

3 Symmetric face generative model composition 
As introduced in [30], the variational autoencoder (VAE) network commonly consists of 
two parts: an encoder network and a decoder network. To recall the network structure in a 
simple way, the encoder compresses the input data 𝑥𝑥 (an image) into a vector 𝓏𝓏 of latent 
variables, which represents the most important features from 𝑥𝑥. The decoder translates this 
latent vector 𝓏𝓏 back to a desired image 𝑥𝑥�, more specifically, according to the sampled 𝓏𝓏 
based on a target distribution 𝑄𝑄(𝓏𝓏|𝑋𝑋) learnt from the training data. The proposed method is 
inspired by the concept of VAEs. The information of the symmetric face is obviously 
encoded in the original facial image, which can be extracted from 𝓏𝓏 , a vector of the 
compressed input data. It doesn’t necessarily be the whole latent vector, but a sample of it. 
The goal of the proposed method is to estimate this sampling distribution, which can 
construct a model for face symmetrization.  

The main work flow of the proposed method is demonstrated in Fig. 1, which consists of 
three training stages: (a) The first stage tries to reconstruct the original facial image, which 
can be trained using the face training data that are sufficient enough in publicly available 
database. This stage will help to extract a proper 𝓏𝓏 to accurately describe the input data. (b) 
The second stage tries to re-train the model to find the facial regions in the facial images. 
This stage will learn a distribution to accurately sample 𝓏𝓏 for image features that represent 
the faces. (c) The third stage tries to transfer the model to achieve the symmetric face 

 
Figure 1: The pipeline of the proposed model. 
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generating. The training data in the second and third stages can be substantially less than 
what in the first stage. The proposed model is achieved by a convolutional neural network 
as the encoder, and a deep generative deconvolutional network as the decoder. 

3.1 CNN based face encoder 
The encoder of the proposed model is constructed using a convolutional neural network. 
Considering 𝑁𝑁  data points (facial images) 𝑋𝑋 = {𝑥𝑥(𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , we are trying to estimate a 
probability 𝑄𝑄(𝓏𝓏|𝑋𝑋) to properly describe the distribution of the latent vector 𝓏𝓏 given the input 
data points. This is achieved by a convolutional layer and a pooling layer alternating multiple 
times. An activation operation is applied at the end of each convolutional layer. The 
parameters of each convolutional layer and pooling layer can be different and make the stack 
of the layers forming up a top-down funnel shape. The convolutional and pooling layers are 
illustrated below with the total layer number as 𝐿𝐿 and current layer as layer-𝑙𝑙: 

Conv Layer:  𝐂𝐂�(𝑖𝑖,𝑘𝑘𝑙𝑙−1,𝑙𝑙−1) = 𝐂𝐂(𝑖𝑖,𝑙𝑙−2) ∗ 𝐅𝐅(𝑘𝑘𝑙𝑙−1,𝑙𝑙−1), 𝑘𝑘𝑙𝑙−1 ∈ {1, … ,𝐾𝐾𝑙𝑙−1} (1) 
Pooling Layer:  𝐂𝐂(𝑖𝑖,𝑙𝑙−1)~pooling[ℎ�𝐂𝐂�(𝑖𝑖,Σ𝐾𝐾𝑙𝑙−1,𝑙𝑙−1)�]    (2) 
Conv Layer:  𝐂𝐂�(𝑖𝑖,𝑘𝑘𝑙𝑙,𝑙𝑙) = 𝐂𝐂(𝑖𝑖,𝑙𝑙−1) ∗ 𝐅𝐅(𝑘𝑘𝑙𝑙,𝑙𝑙), 𝑘𝑘𝑙𝑙 ∈ {1, … ,𝐾𝐾𝑙𝑙}    (3) 
Pooling Layer:  𝐂𝐂(𝑖𝑖,𝑙𝑙)~pooling[ℎ�𝐂𝐂�(𝑖𝑖,Σ𝐾𝐾𝑙𝑙,𝑙𝑙)�]    (4) 
Latent Vector:  𝓏𝓏(𝑖𝑖)~𝑄𝑄(𝜇𝜇𝜙𝜙�𝐂𝐂(𝑖𝑖,𝐿𝐿)�, log𝜎𝜎𝜙𝜙2�𝐂𝐂(𝑖𝑖,𝐿𝐿)�)    (5) 

We use each ith data point in 𝑋𝑋 as 𝐂𝐂(𝑖𝑖,1) for layer-1. There are 𝐾𝐾𝑙𝑙  convolutional kernels 
𝐅𝐅(𝑘𝑘𝑙𝑙,𝑙𝑙) for every layer-𝑙𝑙. Each of the kernels computes a 2D feature map 𝐂𝐂�(𝑖𝑖,𝑘𝑘𝑙𝑙,𝑙𝑙). All the 2D 
feature maps in the same layer are stacked with spatial alignment before they can be passed 
to the following pooling layer. The pooling layer exports a 3D tensor 𝐂𝐂(𝑖𝑖,𝑙𝑙)  using max 
pooling strategy with stride being 2 and kernel size being 2 by 2. The ReLU function is used 
as the activator ℎ(∙). For multi-channel images, each channel is processed individually and 
stacked in the Conv Layer.   

3.2 DGDN based face decoder 
The decoder in this paper is achieved with a deep generative deconvolutional network. There 
are two main types of layers in this network, which are the up-sampling layers and the 
convolutional layers. As similar in the encoder, those two types of layers process the data in 
an alternating way:  

Up-sampling Layer: 𝐆𝐆(𝑖𝑖,𝑙𝑙−1)~upsizing�𝐆𝐆�(𝑖𝑖,𝑙𝑙−2)�   (6) 

Conv Layer:  𝐆𝐆�(𝑖𝑖,𝑙𝑙−1) = ∑�ℎ�𝐆𝐆(𝑖𝑖,𝑘𝑘𝑙𝑙−1,𝑙𝑙−2) ∗ 𝐃𝐃(𝑘𝑘𝑙𝑙−1,𝑙𝑙−1)��
𝑘𝑘𝑙𝑙−1=1
𝐾𝐾𝑙𝑙−1  (7) 

Up-sampling Layer: 𝐆𝐆(𝑖𝑖,𝑙𝑙)~upsizing�𝐆𝐆�(𝑖𝑖,𝑙𝑙−1)�    (8) 

Conv Layer:  𝐆𝐆�(𝑖𝑖,𝑙𝑙) = ∑�ℎ�𝐆𝐆(𝑖𝑖,𝑘𝑘𝑙𝑙,𝑙𝑙) ∗ 𝐃𝐃(𝑘𝑘𝑙𝑙,𝑙𝑙)��
𝑘𝑘𝑙𝑙=1
𝐾𝐾𝑙𝑙    (9) 

  Reconstruction:    𝑋𝑋 = �𝑥𝑥(𝑖𝑖)~𝑃𝑃 �𝐆𝐆�(𝑖𝑖,𝑙𝑙), I
𝛼𝛼0
��

𝑖𝑖=1

𝑁𝑁
   (10) 

As shown in Fig. 2, the up-sampling layers and the convolutional layers together achieve 
the deconvolution from the encoded data towards the final reconstructed image. There are 
multiple ways to up-sample the data from the previous layer. One is to pad new pixel values 
outside the original image boundary when the size of the original image is small, as shown 
in the Fig. 2. We can also up-sample the original image by filling the interpolated pixels with 
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a nearest-neighbor strategy in a pre-defined stride (i.e., 2) after the first layer. 𝐆𝐆(𝑖𝑖,𝑙𝑙) can be 
treated as a 3D tensor with 𝐾𝐾𝑙𝑙  slices for the layer-𝑙𝑙  of the decoder network, where 𝑙𝑙 ∈
{1, … , 𝐿𝐿�}. It is actually the latent code (feature map) for the encoded image when in layer-1. 
The feature map 𝐆𝐆(𝑖𝑖,𝑙𝑙) is convolved by 3D convolutional kernel {𝐃𝐃(𝑘𝑘𝑙𝑙,𝑙𝑙)}𝑘𝑘𝑙𝑙=1

𝐾𝐾𝑙𝑙 , and all the 
slices are summed up before being passed to the next layer. ReLU is still used as the activator 
ℎ(∙). In the final layer, the output data will have a distribution approximating 𝔼𝔼(𝑋𝑋) with the 
precision being 𝛼𝛼0 to achieve image reconstruction. 

4 Model parameter learning 
The mathematical basis of the variational autoencoders is actually to solve a distribution 
estimation problem as shown in Eq. (11),  

𝑃𝑃(𝑋𝑋) = ∫𝑃𝑃𝜃𝜃(𝑋𝑋|𝓏𝓏)𝑄𝑄𝜙𝜙(𝓏𝓏)𝑑𝑑𝑑𝑑   (11) 
where 𝑃𝑃𝜃𝜃(𝑋𝑋|𝓏𝓏) = 𝒩𝒩(𝑋𝑋|𝑓𝑓(𝓏𝓏; 𝜃𝜃),𝜎𝜎2 ∗ 𝐼𝐼) allows us to make the dependence of the datapoints 
𝑋𝑋 on the latent vector 𝓏𝓏, and the decoder parameter 𝜃𝜃. 𝑄𝑄𝜙𝜙(𝓏𝓏) indicates a certain probability 
density function, i.e., 𝒩𝒩(0, 𝐼𝐼), to sample the latent vector 𝓏𝓏 from a high-dimensional space 
𝒵𝒵, where 𝓏𝓏 ∈ 𝒵𝒵.To make sure based on this distribution the sampling of the 𝓏𝓏 will properly 
produce a similar 𝑋𝑋, we use 𝑄𝑄𝜙𝜙(𝓏𝓏|𝑋𝑋) to describe this distribution depending on the data 𝑋𝑋 
explicitly. This is a process conducted by the encoder with the model parameter of 𝜙𝜙. Fig. 3 
is a graphical model showing this relationship between the encoding and decoding processes.  

To design the loss function for the model training, we use 𝑄𝑄𝜙𝜙(𝓏𝓏|𝑋𝑋) to describe the 
distribution to generate latent vector 𝓏𝓏 given the training data 𝑋𝑋 in the encoder. We also use 
𝑃𝑃𝜃𝜃(𝑋𝑋|𝓏𝓏) to describe the distribution to reconstruct 𝑋𝑋 given 𝓏𝓏 in the decoder. The parameters 
𝜙𝜙 and 𝜃𝜃 need to be optimized during the training process. The loss function has two parts: a 
distance between the reconstructed data 𝑋𝑋� and training data 𝑋𝑋; a distance between the model 
𝓏𝓏  sampling distribution 𝑄𝑄𝜙𝜙(𝓏𝓏|𝑋𝑋) = 𝒩𝒩(𝓏𝓏|𝜇𝜇(𝑋𝑋;𝜗𝜗),𝜎𝜎(𝑋𝑋;𝜗𝜗))  and the target 𝓏𝓏  sampling 
distribution, which is 𝑃𝑃(𝓏𝓏) = 𝒩𝒩(𝓏𝓏|0, 𝐼𝐼) for most cases. 

Lossxent = 𝐻𝐻�𝑃𝑃(𝑋𝑋),𝔼𝔼𝓏𝓏~𝑄𝑄[𝑃𝑃𝜃𝜃(𝑋𝑋|𝓏𝓏)]� = 𝔼𝔼�−𝑃𝑃(𝑋𝑋) log𝔼𝔼𝓏𝓏~𝑄𝑄[𝑃𝑃𝜃𝜃(𝑋𝑋|𝓏𝓏)]�
= −∑ [𝑥𝑥𝑖𝑖 log 𝑥𝑥�𝑖𝑖 + (1 − 𝑥𝑥𝑖𝑖)log (1 − 𝑥𝑥�𝑖𝑖)]𝑁𝑁

𝑖𝑖=1
 (12) 

Loss𝐷𝐷𝐾𝐾𝐾𝐾 = 𝒟𝒟[𝑃𝑃(𝓏𝓏)||𝑄𝑄𝜙𝜙(𝓏𝓏|𝑋𝑋)] = 𝔼𝔼𝓏𝓏~𝑄𝑄�log𝑃𝑃(𝓏𝓏) − log𝑄𝑄𝜙𝜙(𝓏𝓏|𝑋𝑋)�

= −1
2

(1 + log𝜎𝜎2 − 𝜇𝜇2 − 𝑒𝑒𝜎𝜎2)
  (13) 

Loss = Lossxent + Loss𝐷𝐷𝐾𝐾𝐾𝐾    (14) 

  
Figure 2: The illustration for deconvolution 
process. The up-sampling process is achieved 
by padding pixels outside the image boundary 
for 2x2 input data, and by nearest-neighbour 
interpolation for larger sized input data.  

Figure 3: The graphical model for the 
probabilistic relationship between the 
encoding and the decoding process. 𝜙𝜙 
and 𝜃𝜃  are the parameters for the 
encoder and the decoder respectively. 
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Hence, the total loss consists of a cross entropy Lossxent  and a Kullback-Leibler 
divergence Loss𝐷𝐷𝐾𝐾𝐾𝐾 as shown from Eq. (12) to (14). In the training process, the proposed 
model uses the manually crafted symmetric faces as the training data. Therefore, the size of 
the training data cannot be large enough to train the whole model. To tackle this, we design 
a multi-stage training process for the task.  

4.1 A multi-stage training strategy 
The objective of the proposed model is to generate a symmetric face when given a normal 

facial image. However, in practice, there is no available database dedicated for such 
symmetric face to support end-to-end model training process. To tackle this problem, we 
design a multi-stage model training process to avoid the demand for a large amount of 
symmetric face as training data.  

It is obvious that the generating of the symmetric face is highly related to the 
reproduction of the facial image, as well as the extraction of the facial region. Therefore, as 
shown in Fig. 1, to establish the proposed model, we can firstly train the model to reconstruct 
the facial image. There are sufficient facial images enough as the training data publicly 
available. And then in the second stage, the model is re-trained to generate face only images. 
And in the final stage, the model is transferred for the symmetric face generating task using 
the manually prepared training data. This strategy can make the training data of symmetric 
face to be substantially less than the training data used for the first stage.  

5 Experiments 

5.1 Dataset 
The proposed facial symmetrization model is trained on the Labelled Faces in the Wild 
(LFW) facial database [31] of more than 13K unconstrained facial images collected from 
the web. Those data include the facial images with different head poses, different ambient 
illuminations, different face sizes, and some of them with different facial occlusions such as 
shades or hands. The facial images are taken from the real photographs in the wild, which 
covers different skin colours, genders and ages. The only constraint of those facial images 
is that they are detected by the Viola-Jones face detector [32].  

This database provides facial labels, yet only the facial images are utilized to train the 
proposed model. We use 10K images as the training data for the first training stage,1K 
images for validation, and 2K images for the evaluation of the generating performance of 
the proposed model. We also manually crop facial regions for 5K of the facial images for 
the second training stage. The facial middle lines on those face-only images are manually 
marked as well to generate 5K symmetric faces for the third training stage. To further test 
the performance of the proposed method, we also conducted evaluations on the 2500 2D 
facial images from the database of Binghamton University 3D Facial Expression (BU-
3DFE) [33]. The training process is conducted based on a GTX1070 GPU. 

5.2 Symmetric face generating 
We evaluate our method on the face database of LFW and BU3D, which respectively 
provide the uncontrolled and controlled facial images. The visual examples of the 
experiment results are demonstrated in Fig. 4.  
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Experiment samples on LFW database 

      

      

      

      

      

      

      
Input image Face only Input image Symmetric face Input image Symmetric face 

      
Experiment samples on BU3D database 

      
Input image Symmetric face Input image Symmetric face Input image Symmetric face 

Figure 4: Samples of the experiment results for symmetric face generating on both LFW and 
BU3D database. Since the proposed model is trained in three stages, some generated face 
only images are also demonstrated. It can be noticed that some test examples with large head 
poses or facial occlusions such as shades, can also be well handled by the proposed model. 
Those will pose more challenges for traditional facial landmark based methods.  
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 Ours CLNF [28] SDM [22] CLM [27] Dlib [34] 
Recognition Accuracy of 
Symmetrized Faces with 

respect to the Original Faces 
0.872 0.738 0.694 0.658 0.712 

 

Table 1: The performance comparisons of the proposed method with several most popular 
approaches 

It can be observed in Fig. 4 that the generated symmetric faces look very similar to the 
original input facial images, except that they are perfectly symmetric. For the uncontrolled 
facial images in LFW database, it can be noticed that there are test data with large head 
poses, as well as the facial occlusions caused by the shades or the hands. Those conditions 
can pose much more challenges for the traditional symmetric face generating methods that 
based on the facial landmark detections. On the other hand, the proposed method analyses 
the whole facial images to extract the facial region and generate a symmetric face, which 
makes the proposed method more robust to above conditions. The noises on the local regions 
have less impacts on the performance of our method. Since the proposed model is trained 
based on a 3-stage strategy, we also present some experiment results for the extracted face-
only images using the model trained after second stage. 

Beside those visual demonstrations, we also compare our method with several other 
traditional methods based on different facial landmark detection algorithms, including some 
of the most robust and popular ones such as CLNF [28], SDM [22], CLM [27] and Dlib [34]. 
The generated symmetric faces have the same facial identities of the original images, based 
on which we employ facial recognition algorithm to identify whether the generated 
symmetric face belongs to the same person in the original image. This yields a recognition 
accuracy that can reflect the symmetric face generating performance. The performance 
comparisons based on this quantitative measurement are demonstrated in Table 1. The 
OpenFace [35] is utilized to achieve the facial recognition in these evaluation experiments 
due to its excellent recognition performance on LFW database [36]. As it can be seen, the 
performance using the traditional facial landmark based methods can be negatively 
impacted, especially when finding facial middle line under uncontrolled conditions even 
those traditional methods have a good performance on facial landmark detection task. The 
proposed method can achieve a competitive and robust result by the full image analysis.    

6 Conclusion 
Based on the structure of the variational autoencoders, this paper presents a generative model 
for symmetric face reconstruction given an unconstrained facial image. The proposed model 
consists of a convolutional neural network as the encoder, and a deep generative neural 
network as the decoder. The generative model in this paper utilizes a 3-stage coarse-to-fine 
training strategy, which avoids the demand for the large amount of the symmetric face as 
training data. In the first stage, the generative model is trained to reproduce the whole facial 
images. The training data for this stage is sufficient enough since there are plenty of facial 
image database publicly available. In the second stage, the model is re-trained to extract the 
face only images from the input data. In the final stage, the model is transferred to generate 
symmetric faces based on the manually crafted training data, which can be substantially less 
that what required in the first training stage. The performance of the proposed model is 
demonstrated in the experiments. Along with the visual demonstration, the proposed method 
also achieves competitive performance compared with several other solutions based on some 
of the most popular facial landmark detection methods in this field.   
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